
Fourier Transforms in Matlab
Matlab has a number of great functions implementing the FFT. Let’s start with some simple examples:

>> x=[4 3 7 -9 1 0 0 0];
>> y=fft(x)

y =

6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

The first element is real and is the zero-frequency part of the transform. In particular adding together the ele-
ments of x:

4+3+7-9+1+0+0+0 = 6.

Since the elements of x are spaced by ones, the sum is simply the integral of the input function or the area under
the input function. Dividing by the number of samples yields the average of the input signal or it’s “DC” value.
The next three entries are the positive frequencies in the transform while 18.0 is the transform value at the Ny-
quist frequency. fN=1/(2Dt) = 0.5 Hz (given Dt=1). The final three elements are the negative frequency values.
If you compare the negative and positive frequency values, you see that the amplitudes are the same, but the
actual values differ in the sign of the imaginary value. y(w)=y(-w)* where ‘*’ indicates the complex conjugate.
That is, the transform is Hermitian as indicated earlier in the notes. The Fourier Transform of a real function is
Hermitian. Let’s see how this can be packed in a more rational way:

z=fftshift(y)

z =

18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i

Now the DC value is in the center with the negative
frequencies lying above the Nyquist until the DC value
is reached. The remaining frequencies are positive with
the complex conjugate values of the negative frequen-
cies.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107

cycles/year

Periodogram

Figure 1: Sunspot time series.

Fourier Transforms are helpful not only in solving
partial differential equations, but can be very helpful in
data analysis. A good example, with a data table built
into Matlab itself, has to do with the variations in sun-
spot activity during the past 300 years. You likely know
that sunspot activity occurs in cycles with a period of
approximately 11 years. It’s a fairly significant outcome
of the processes that drive the magnetohydrodynamics
of the Sun. Astronomers have tabulated a Wolfer num-
ber that is representative of both the number and size of
sunspots.

>> load sunspot.dat
>> year=sunspot(:,1);
>> wolfer=sunspot(:,2);
>> plot(year,wolfer)
>> title(‘Sunspot Data’)
>> xlabel(‘Year’)
>> ylabel(‘Wolfer Number’)

Matlab loads a dataset installed with Matlab called “sunspot.” The data in sunspot are arranged in two columns
with year in the first column and the Wolfer number in the second. The time series are shown in Figure 1. Now
take the FFT of the sunspot data.

>> Y=fft(wolfer);
>> N=length(Y);
>> Y(1)=[];
>> power=abs(Y(1:N/2)).^2;
>> nyquist=1/2;
>> freq=(1:N/2)/(N/2)*nyquist;
>> plot(freq,power), grid on
>> xlabel(‘cycles/year’)
>> title(‘Periodogram’)

The result is a complex vector, Y. The magnitude of Y squared is called the power and a plot of power versus
frequency is a periodogram. The first component of Y is removed (the DC component). The periodogram is
shown in Figure 1. A peak is readily seen in the signal at a frequency of 1/11 years. This would probably be
more obvious if the function was plotted in years/cycle (the inverse of the x-axis in Figure 1).

>> period=1./freq;
>> plot(period,power), axis([0 40 0 2e7]), grid on
>> ylabel(‘Power’)
>> xlabel(‘Period(Years/Cycle)’)

The peak at 11 years is now quite obvious (Fig. 2). If we look for the peak in the power spectrum, we can deter-
mine the sunspot period more precisely:

>> [mp index] =max(power);
>> period(index)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107

Po
w

er

Period(Years/Cycle)

Figure 2: Power spectrum for sunspots

ans =

 11.0769

So the period, based on 300 years of data, is slightly
greater than 11 years! The utility of the FFT in data
analysis should be pretty obvious. An entire course can
be devoted to time series analysis and the use of the
FFT!

Just a quick note, don’t miss the subtle use of .^ and ./
above to denote element-by-element operations on vec-
tors.

2-D Fourier Transforms

Let’s have a look at some two-dimensional Fourier Transforms now.

>> [x,y]=meshgrid(1:30);
>> Z=zeros(30,30);
>> Z(5:24,13:17)=1;
>> mesh(x,y,Z)
>> [x,y]=meshgrid(1:30);

This creates a 2-D gate function or box in Matlab with different horizontal dimensions in the x,y directions with
a value of 1 within the box. The function is plotted in Figure 3. The Matlab functions fft, fft2 and fftn imple-
ment the Fast Fourier Transform for computing the 1-D, 2-D and N-dimensional transforms respectively. The

inverse functions ifft, ifft2 and ifftn compute the
inverse transforms.

 Note that the function is long in the y-direction and
short in the x-direction. This will affect the Fourier

transform views in the linerarly-related frequency or
wavenumber domain. We’ll plot this function first with another Matlab routine called “imshow:”

0
5

10
15

20
25

30

0
5

10
15

20
25

30
0

0.2

0.4

0.6

0.8

1

Figure 3: Gate function in 2-D.

−1

0

1

2

3

4

5

Figure 5: Fourier transform at low resolution.
Figure 4: Top view of gate function.

>>imshow(Z,’InitialMagnification’,’fit’)

This provides an alternative view of the box with
amplitude = 1 at the center of the 2-D field (Fig.4).
Now let’s take the Fourier transform:

>>F=fft2(Z);
>>F2=log(abs(F));
>>imshow(F2,[-1 5],’InitialMagnification’,’fit’);
colormap(jet); colorbar

The Fourier Transform (Fig. 5) just computed is
quite low resolution and the zero component (or
DC) is still in the upper left corner instead of at
the center. Let’s pad the Fourier Transform to 256
points in each direction and have another look.

>>F = fft2(W,256,256);

>>imshow(log(abs(F)),[-1 5]); colormap(jet); color-
bar

This version (Fig 6) has a much higher resolution
although we have not yet moved the zero frequency
amplitude to the center. Let’s do that.

>>F2 = fftshift(F)
>>imshow(log(abs(F2)),[-1 5]); colormap(jet); color-
bar

Figure 7 now shows the 2-D spectrum in high reslu-
tion with the DC component in teh correct place.

It’s possible to view the 2-D spectrum differently.
Figure 8 shows a mesh presentation of the Fourier
Transform of the 2-D gate function.

>>mesh(log(abs(F2))

Recall from the lecture notes that a 1-D gate function
transforms into a sinc function of sin(px)/(px).

Let’s look at a simple 1-D example. First create a gate function:

>> t=zeros(256);
>> t(122:132)=1;

Now take the Fourier Transform:

>> w=fft(t);

−1

0

1

2

3

4

5

Figure 6: Higher resolution Fourier Transform. The DC
component is still inappropriately located in the plot.

−1

0

1

2

3

4

5

Figure 7: High resolution 2-D Fourier Transform with
the DC component located in the center of the plot. Recall
that the original gate had a long dimension in the y-direc-
tion and a short, localized dimension in the x-direction.
The frequency content in the x-direction decays less rap-
idly than in the y-direction. A localized object in the x or t
direction requires a broad spectrum and vice-versa.

>> x=fftshift(w);

This gives us the properly arranged FFT. Now generate a gate function that is broader:

>> t(102:152)=1;
>> w1=fft(t);
>> x1=fftshift(w1);
>> plot(x,’r’,x1,’b’)

Now plot the narrow gate function in red followed by the broader function in blue:

>> plot(abs(x),’r’)
>> hold on
>> plot(abs(x1),’b’)

Figure 8: Mesh plot of Figure 7. Now it’s possible to see clearly the sinc functions in both
the x & y directions rather than simply color graphics. All of these figures are itegrated into
the notes in encapsulated postcript format (eps) so the rendering on the page is a bit spotty.
Looks best when printed on a good color printer.

0 50 100 150 200 250 300
0

10

20

30

40

50

60
Figure 9: Two Fourier
Transforms of gate func-
tions. The blue function
correspondes to the broad-
er gate function resulting
in a more localized sinc
function in the frequency
domain. This is the same
effect as noted in Figures
5-8 above.

