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We present the main properties of the spectral-element method, which is well
suited for numerical calculations of synthetic seismograms for three-dimensional
Earth models. The technique is based upon a weak formulation of the equations
of motion and combines the flexibility of a finite-element method with the accuracy
of a pseudospectral method. The mesh is composed of hexahedral elements and
honors the main discontinuities in the Earth model. The displacement vector is
expressed in each element in terms of high-degree Lagrange interpolants, and
integrals are computed based upon Gauss-Lobatto-Legendre quadrature, which
leads to an exactly diagonal mass matrix and therefore drastically simplifies the
algorithm. We use a fluid-solid coupling formulation that does not require iterations
at the core-mantle or inner-core boundaries. The method is efficiently implemented
on parallel computers with distributed memory based upon a message-passing
methodology. We present two large-scale simulations for a realistic three-dimen-
sional Earth model computed on the Japanese Earth Simulator at periods of 5 s
and longer.

1. INTRODUCTION

The accurate calculation of seismograms in realistic three-
dimensional (3-D) Earth models represents an ongoing chal-
lenge in local, regional, and global seismology. In the past
three decades, a wide variety of numerical techniques has
been used to address this issue. The most widely used ap-
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proach for full-waveform modeling is probably the finite
difference method [e.g., Madariaga, 1976; Virieux, 1986], in
which one approximates derivatives by differences between
adjacent grid points. This approach has been used to calculate
the wave field in 3-D local and regional models [e.g., Graves,
1996; Ohminato and Chouet, 1997]. Unfortunately, this clas-
sical method suffers from limitations when addressing the
complexity of typical 3-D models, such as the presence of
surface topography or major discontinuities within the model
[e.g., Robertsson, 1996; Ohminato and Chouet, 1997]. Re-
cently developed optimal or compact finite-difference opera-
tors have improved this situation [e.g., Zingg et al., 1996;
Zingg, 2000]. Methods that resort to more accurate spatial
derivative operators, such as spectral and pseudospectral
techniques based on global gridding of the model, have also
been used to address regional [e.g., Carcione, 1994] and
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global [e.g., Tessmer et al., 1992] seismic wave propagation
problems. However, because of the use of global basis func-
tions (polynomial: Chebyshev or Legendre, or harmonic:
Fourier), these techniques are limited to smooth media, and
numerical noise (i.e., ringing) appears in the presence of
sharp discontinuities in the model, such as major interfaces
or faults.

Boundary element [e.g., Kawase, 1988] or boundary inte-
gral methods [e.g., Sánchez-Sesma and Campillo, 1991] pro-
vide a powerful direct way of incorporating topographic
variations and interfaces, but are restricted to a finite number
of homogeneous regions. In addition, in 3-D the cost of such
techniques increases rapidly with numerical resolution, and
a truncation threshold often has to be applied, which leads
to numerical artefacts in the solution [e.g., Bouchon et al.,
1996].

Classical finite-element methods have been successfully
applied to the study of wave propagation in 3-D sedimentary
basins [e.g., Bao et al., 1998]. These techniques handle
previously mentioned difficulties related to the presence of
topography or major interfaces by allowing grid boundaries
to coincide with major interfaces. However, the spatial dis-
cretization itself is often inadequate because of the low poly-
nomial degree used to expand functions within each element,
and, in addition, large linear systems have to be solved by
approximate, iterative routines, which increases the cost of
the calculations and complicates the implementation of the
algorithm, in particular on a parallel computer. A low poly-
nomial degree is traditionally used in such techniques be-
cause the complexity of the linear system increases with the
degree.

The purpose of this article is to give an introduction to
the main properties of the spectral-element method (SEM)
for seismic wave propagation. The SEM has been used for
two decades in computational fluid dynamics [Patera, 1984].
It has more recently been applied to problems related to
two-dimensional (2-D) [Cohen et al., 1993; Priolo et al.,
1994] and 3-D local or regional [Komatitsch, 1997; Faccioli
et al., 1997; Komatitsch and Vilotte, 1998; Seriani, 1998;
Komatitsch and Tromp, 1999; Komatitsch et al., 2004; Liu
et al., 2004] and global [Chaljub, 2000; Komatitsch and
Tromp, 2002a, b; Komatitsch et al., 2002; Chaljub et al.,
2003; Komatitsch et al., 2003; Chaljub and Valette, 2004]
seismic wave propagation. We introduce the full complexity
of the 3-D Earth, i.e., lateral variations in compressional-
wave speed, shear-wave speed, and density in the mantle, a
3-D crustal model, anisotropy, ellipticity, surface topography
and bathymetry, as well as the effects of the oceans, rotation,
and self-gravitation. All of these effects have been bench-
marked in previous publications [Komatitsch and Vilotte,
1998; Komatitsch and Tromp, 1999; Komatitsch et al.,

2000a, b; Komatitsch and Tromp, 2002a, b]. In this article,
we use a simpler fluid-solid coupling method that does not
require numerical iterations, based on the recent work of
Chaljub and Valette [2004]. We illustrate how the method
can be applied to high-resolution simulations of seismic
wave propagation in the 3-D Earth on a very large parallel
computer: the Earth Simulator at JAMSTEC in Japan.

2. DESIGN OF THE MESH

The first, crucial step in the SEM consists of designing a
high-quality mesh for the 3-D model, subject to constraints
imposed by the required number of grid points per shortest
wavelength, the numerical stability condition, and accept-
able geometrical distortions of the elements. The mesh is
designed once and for all: seismic wave propagation is gener-
ally a small deformation problem and therefore one does not
need to consider dynamically deforming meshes or dynamic
remeshing. This step is very similar to mesh design for
general finite-element methods (FEMs), therefore the reader
is referred to Zienkiewicz [1977] and Hughes [1987] for a
thorough introduction to such techniques.

The model volume � is subdivided into a number of
nonoverlapping elements �e, e = 1, . . . , ne, such that � =
∪ ne

e=1 �e (Figure 1). In the context of FEMs, various types
of elements �e can be used, such as tetrahedra, hexahedra,
pyramids, and prisms. In the classical SEM, however, one
can only use hexahedra, for reasons that will be explained
in Section 3. It is worth mentioning that SEMs can be devel-
oped on triangles [e.g., Sherwin and Karniadakis, 1995;
Taylor and Wingate, 2000; Komatitsch et al., 2001], but this
leads to theoretical complications that are beyond the scope
of this article. The basic idea is that on hexahedral elements
one can use a tensor product of 1-D basis functions, which
in turn gives an exactly diagonal mass matrix, while with
tetrahedra the tensorization is lost. As in any FEM, the mesh
needs to be geometrically conforming, i.e., the six sides of
each hexahedral element must match up exactly with the
sides of neighboring elements. Let us also mention that
the SEM can be adapted to geometrically non-conforming
meshes based on the so-called ‘mortar’ matching method
[e.g., Chaljub, 2000; Chaljub et al., 2003], and that such
non-conforming meshes can be coupled with other numerical
or quasi-analytical techniques, such as normal-mode summa-
tion [Capdeville et al., 2003], but this is beyond the scope
of this article.

The shape of the physical grid is formulated by a mapping
(deformation) of a reference cube. Cartesian points x = (x,
y, z) within a given deformed, hexahedral element �e are
mapped to the reference cube based upon the transform
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Figure 1. Finite Earth model with volume � and free surface ∂�
(top). � is the artificial absorbing boundary, and n̂ the unit outward
normal on the surface. xs indicates the location of the source. The
model is subdivided into curved spectral elements using quadran-
gles in 2-D and hexahedra in 3-D (bottom). The shape of the
elements is adapted to all the major discontinuities in the geological
model, i.e., surface topography, main layers, and faults. Inside each
element, the model can be heterogeneous.

x(�) = �
na

a=1
Na(�)xa . (1)

Points within the reference cube are denoted by the vector
� = (�,�,� ), where −1 ≤ � ≤ 1, −1 ≤ � ≤ 1 and −1 ≤ � ≤ 1.
In our implementation, the geometry of the spectral elements
is controlled by na = 27 points, or anchors, xa, as shown in
Figure 2. The na shape functions Na are triple products of
1-D degree-2 Lagrange polynomials in the three orthogonal
directions of space in the reference cube. The three Lagrange
polynomials of degree 2 with three control points �0 = −1,
�1 = 0, and �2 = 1 are �2

0(� ) = 1
2
� (� − 1), �2

1(� ) = 1 − � 2,

and �2
2(� ) = 1

2
� (� + 1).

The Jacobian J of the mapping J = |∂(x, y, z) /∂ (�, �, � )|
is used to define the relationship between a small volume
dx dy dz within a given finite element and a volume d� d�
d� in the reference cube:

dx dy dz = J d� d� d� . (2)

The partial derivative matrix ∂x /∂� needed for the calcula-
tion of the Jacobian is obtained by analytically differentiating

Figure 2. The geometry of each of the curved hexahedra is defined
by 27 control nodes, or anchors. Lagrange interpolants of degree 2
at these control points allow one to compute the Jacobian matrix
of the transformation between the reference cube and the deformed
spectral element.

the mapping (1). The partial derivatives of the shape func-
tions Na are expressed in terms of Lagrange polynomials of
degree 2 and their derivatives at the 27 control points.

As in any FEM [e.g., Hughes, 1987], the Jacobian matrix
plays a critical role in designing a good mesh for a realistic
3-D structure. First, the determinant of the Jacobian matrix
J should never vanish to ensure that the local mapping (1)
is unique and invertible. Second, local variations of the
Jacobian should be smooth everywhere within the mesh.
Sharp local variations indicate highly-distorted elements that
lead to inaccurate or even unstable calculations.

For the implementation of absorbing boundary conditions
as well as in the context of fluid-solid coupling, surface
integrals need to be evaluated. Because the mesh of hexahe-
dra �e honors the major discontinuities in the model, the
surfaces are naturally divided in terms of non-overlapping
quadrilateral surface elements �b that are isomorphous to
the square. For any given boundary element, the relation
between a point x within the element and a point (�, �) in
the reference square may be written in terms of 2-D shape
functions Na(�, �) and anchors xa in the form

x(�, �) = �
na

a=1
Na(�, �)xa . (3)

In this case the shape functions are products of 1-D degree-
2 Lagrange polynomials. Given this mapping, the normal n̂
to a boundary element �b is given by

n̂ =
1

Jb

∂x
∂�

×
∂x
∂�

, (4)
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where Jb denotes the Jacobian of the transformation:

Jb = ��∂x
∂�

×
∂x
∂��� . (5)

The relationship between a small surface element dx dy and
a surface d� d� in the reference square is then

dx dy = Jb d� d� . (6)

To avoid a staircase discretization of major interfaces and
the related spurious diffraction that appears in methods based
on a regular grid of points, a good mesh should honor all
the major discontinuities in the model (Figure 1). In addition,
wave speed usually increases with depth (e.g., sediments
above bedrock at the local or regional scale, or crust above
mantle on a global scale), and ideally one wants to increase
the size of the elements with depth in order to maintain a
similar number of points per wavelength everywhere in the
model (i.e., to provide the same numerical resolution every-
where).

To illustrate how to construct a mesh in practice for the
globe, we explain how to build a grid designed to match
the 1-D Preliminary Reference Earth Model (PREM) [Dzie-
wonski and Anderson, 1981]. Following the ideas of Taylor
et al. [1997] and Chaljub [2000], we first decompose the
sphere into six blocks using the concept of the ‘quasi-uni-
form gnomonic projection’, or ‘cubed sphere’ [Sadourny,
1972; Ronchi et al., 1996], as illustrated in Figure 3. We
then mesh each of the six blocks, making sure that they
match perfectly at their common interfaces. Following Chal-
jub [2000], the singularity of coordinates at the Earth’s center

Figure 3. The ‘cubed sphere’ decomposition of the spherical Earth
into six blocks. One of the six blocks has been removed for clarity.

is avoided by placing a small cube around the center of the
inner core. The mesh within this cube matches up with the
cubed sphere mesh at the inner-core boundary (ICB). As
mentioned above, our final mesh needs to honor all first-
order discontinuities in PREM, which are the middle crust
at a depth of 15 km, the Moho at a depth of 24.4 km, the
upper mantle discontinuities at depths of 220 km, 400 km,
and 670 km, the core-mantle boundary (CMB), and the
ICB; it also honors second-order discontinuities at 600 km,
771 km, and at the top of D’’. The density of the mesh is
increased in the upper part of the model (crust and upper
mantle) based upon a set of geometrical doubling mesh cells
(Figure 4). A first doubling region is introduced below the
Moho, a second below the 670 km discontinuity, and a third
just above the ICB. Note that for other classical models,
such as IASP91 [Kennett and Engdahl, 1991], the mesh
would be slightly modified because it would need to honor
a set of major discontinuities located at slightly different
depths.

For our 3-D global mesh we use mantle model S20RTS
of Ritsema et al. [1999], whose lateral variations are super-
imposed on PREM. Variations in density are obtained by
scaling the shear-wave speed variations by a factor of 0.4,
in accordance with mineral physics estimates [Anderson,
1987; Karato, 1993]. For the crust we use model Crust 2.0
[Bassin et al., 2000], which is a global 2° × 2° model. We
implement a smooth, interpolated version of this crustal
model to define the compressional- and shear-wave speeds
at existing grid points in our mesh. We do not adapt our
mesh to the shape of the Moho or intracrustal discontinuities
given by this crustal model because we would need to signifi-

Figure 4. Close-up of the two geometrical mesh doubling regions
in the mantle.
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cantly increase the number of grid elements in the crust and
right below the Moho, which in turn would significantly
increase the cost of the numerical simulations. Presently,
the shape of these intracrustal interfaces and the Moho is
insufficiently known to warrant this.

Once the mantle and crustal models have been added, we
make the Earth elliptical in shape. Our mesh incorporates a
smoothed version of global topography and bathymetry. The
bathymetry map is also used to define the thickness of the
oceans at the surface of the mesh in order to take into account
the effects of the oceans on global wave propagation, as
will be explained in Section 3.5.

The quality of the mesh can be expressed in terms of the
number of grid points per wavelength, i.e., the resolution of
the mesh in terms of how well it samples the wave field,
N = �0 (v/�h)min. Here �0 denotes the shortest period of the
source and (v/�h)min denotes the minimum ratio of shear-
wave or surface-wave speed v and grid spacing �h within
a given spectral element in the mesh. Because surface waves
are slower than shear waves, in elements located at the
free surface it is the surface-wave speed that controls the
resolution of the mesh, not the shear-wave speed; inside the
model it is the shear-wave speed that matters.

3. SOLVING THE WAVE EQUATION ON A
SPECTRAL-ELEMENT GRID

3.1. The Weak Form of the Seismic Wave Equation

The differential form of the seismic wave equation is classi-
cally written in the form

�∂2
t s = � · T + f , (7)

where � denotes the 3-D distribution of density and T the
stress tensor, which is linearly related to the displacement
gradient �s by Hooke’s law:

T = c : �s . (8)

We make no particular assumption on the structure of the
stiffness tensor c that describes the properties of the medium,
i.e., the formulation is general and can handle a fully aniso-
tropic tensor with 21 independent coefficients. In an attenuat-
ing medium, the stress is determined by the entire strain
history, and Hooke’s law (8) becomes:

T(t) = �t

-	
∂t c(t − t′ ) : �s(t′ )dt′ . (9)

In seismology, the quality factor Q is generally observed to
be approximately constant over a wide range of frequencies.

To approximate such an absorption-band solid, Liu et al.
[1976] introduced the idea of using a series of L standard
linear solids [e.g., Emmerich and Korn, 1987; Carcione et
al., 1988; Moczo et al., 1997]. An almost constant Q can
usually be approximated with a reasonable level of accuracy
using three such linear solids. In the Earth, the bulk quality
factor is several hundred times larger than the shear quality
factor, which means that attenuation mainly depends on
the shear quality factor. Therefore as far as attenuation is
concerned one can safely assume that it is sufficient to model
the time evolution of the average isotropic shear modulus.
As a consequence, following Liu et al. [1976], we write:


 (t) = 
R �1 − �
L

�=1
(1 − ��

� /� �
� )e-t/� �

�� H(t) . (10)

Here 
R denotes the relaxed modulus, H(t) is the Heaviside
function, and � �

� and � �
� denote the stress and strain relax-

ation times, respectively, of the �-th standard linear solid.
Using the absorption-band shear modulus (10), the constitu-
tive relation (9) becomes

T = cU : �s − �
L

�=1
R� , (11)

where cU is the unrelaxed elastic tensor determined by the
unrelaxed shear modulus


U = 
R �1 − �
L

�=1
(1 − � �

� /��
�� . (12)

For each standard linear solid we therefore have to solve the
so-called ‘memory variable’ equation

∂ tR� = − (R� − 

�D) /��
� , (13)

where D is the strain deviator:

D = 1
2
[�s + (�s)T] − 1

3
(� · s)I . (14)

Here a superscript T denotes the transpose and I is the
identity tensor. The memory-variable tensors R� are sym-
metric and have zero trace, such that each standard linear
solid introduces five additional unknowns. The modulus
defect 

� associated with each individual standard linear
solid is determined by



� = −
R(1 − ��
� /� �

� ) . (15)
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If the earthquake can be represented by a point source, the
force f in (7) may be written in terms of the moment tensor
M as [Dahlen and Tromp, 1998]:

f = − M · ∇
(x − xs) S(t) . (16)

The location of the point source is denoted by xs, 
 (x − xs)
is the Dirac delta distribution located at xs, and S(t) is the
source-time function. In the case of a source of finite size,
such as a fault plane ∑s, the source term can be written in
terms of the moment-density tensor m as

f = − m(xs, t) · ∇
(x − xs) on ∑s . (17)

In what follows we will use the finite source (17) for reasons
of generality.

As illustrated in Figure 1, two types of boundary condi-
tions must be considered: on the free surface ∂� the traction
n̂ · T, where n̂ denotes the unit outward normal on the
free surface, vanishes, and in the case of local or regional
simulations, seismic energy needs to be absorbed on the
fictitious boundaries � of the domain, in order to mimic a
semi-infinite medium. To accomplish the latter, one usually
uses a paraxial equation to damp the wave field on the edges
[Clayton and Engquist, 1977; Quarteroni et al., 1998], for
instance

T · n̂ = � [vn(n̂ · ∂ts)n̂ (18)
+ v1(t̂1 · ∂ts) t̂1 + v2(t̂2 · ∂ts) t̂2] ,

where t̂1 and t̂2 are orthogonal unit vectors tangential to the
absorbing boundary � with unit outward normal n̂, vn is the
quasi-P wave speed of waves traveling in the n̂ direction,
v1 is the quasi-S wave speed of waves polarized in the t̂1

direction, and v2 is the quasi-S wave speed of waves polar-
ized in the t̂2 direction. The absorbing boundary condition
(18) perfectly absorbs waves impinging at a right angle to
the boundary, but is less effective for waves that graze
the boundary [Clayton and Engquist, 1977]. It is valid for
transversely isotropic media with a horizontal or vertical
symmetry axis; general anisotropy can be accommodated
by tapering it such that the medium becomes transversely
isotropic on the absorbing boundary �. It is worth mentioning
that in recent years a significantly more efficient absorbing
condition called the Perfectly Matched Layer (PML) has
been introduced [Bérenger, 1994; Collino and Tsogka,
2001], and it has been shown recently that it can be adapted
to SEMs [Komatitsch and Tromp, 2003; Basu and Chopra,
2004; Festa and Vilotte, 2005]. In the near future, this condi-
tion could replace classical paraxial equations such as that
of Clayton and Engquist [1977] in existing FEM or SEM
codes.

The differential form of the equation of motion (7), which
is frequently called the ‘strong’ formulation of the problem,
is used in many classical numerical techniques, such as
finite-difference and pseudospectral methods. In FEMs or
SEMs, however, one works with a modified version of the
equation called the integral or ‘weak’ formulation of the
problem. It is obtained by first taking the dot product of the
momentum equation (7) with an arbitrary vector w, which
is called a test vector in the context of finite-element analysis.
Next, one performs an integration by parts over the volume �
of the model, imposing the boundary conditions mentioned
above, which gives:

�
�

�w · ∂2
t s d3x = − �

�
∇w : T d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs + �
�

n̂ · T · w d2x . (19)

Equation (19) is equivalent to the strong formulation (7)
because it holds for any test vector w. Note that the source
term (17) has been integrated explicitly using the properties
of the Dirac delta distribution. Equation (19) illustrates why
the SEM is very accurate for modeling surface waves: the
traction-free surface condition is imposed naturally and auto-
matically during the integration by parts, because the contour
integral over the free surface ∂� in (19) simply vanishes.
In other words, the free-surface condition is a natural condi-
tion of the problem. In the context of local and regional
simulations, the last integral on the right-hand side of (19)
involves the absorbing boundary �, which may be imple-
mented based upon the one-way treatment (18). One of the
nice aspects of simulating global wave propagation from
a numerical point of view is that there are no absorbing
boundaries, which simplifies the problem.

At long periods one needs to incorporate the effects of
self gravitation and rotation on seismic wave propagation,
which are mostly relevant for long-period surface waves.
Such effects have been included in the SEM and lead to
additional terms in the weak formulation (19). These terms
were introduced in Chaljub [2000], Komatitsch and Tromp
[2002b], Chaljub et al. [2003] and Chaljub and Valette
[2004], and the corresponding effects on seismic waves were
carefully benchmarked. We summarize these results in the
following sections for completeness.

3.2. The Wave Equation in the Mantle and the Crust

In a rotating, self-gravitating Earth model, the elastic wave
equation for the mantle and crust may be written in the form
[Dahlen and Tromp, 1998]
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� (∂2
t s + 2� × ∂ts) = ∇ · T + ∇(�s · g) − �∇�

− ∇ · (�s)g + f . (20)

Here � denotes the Earth’s angular rotation vector, g the
gradient of the geopotential, and T the stress tensor, which
is linearly related to the displacement gradient ∇s by
Hooke’s law (8) in an elastic model, or by the generalization
(9) in an anelastic model. The earthquake source is repre-
sented by the force f, which is given in terms of the moment-
density tensor m by (17). The perturbed gravitational poten-
tial � is determined by Poisson’s equation within the Earth,
∇2� = − 4�G∇ · (�s), and by Laplace’s equation in the rest
of space, ∇2� = 0.

Because Laplace’s equation is defined in all of space,
solving the momentum equation (20) in conjunction with
Poisson’s and Laplace’s equations is difficult numerically.
The approach can be simplified considerably by making what
is known as Cowling’s approximation [Cowling, 1941], as
discussed by Valette [1987], Dahlen and Tromp [1998] and
Chaljub et al. [2003]. In this approximation one ignores per-
turbations � in the gravitational potential while retaining the
unperturbed gravitational potential. Physically, this means
that we ignore the effects of mass redistribution. Under this
assumption the momentum equation (20) becomes

�(∂ 2
t s + 2� × ∂ts) = ∇· T + ∇(�s·g) − ∇· (�s)g + f . (21)

The associated boundary conditions are that on the free
surface the traction n̂ · T, where n̂ denotes the unit outward
normal to the free surface, needs to vanish. On the CMB
the normal component of displacement n̂ · s needs to be
continuous, and the traction n̂ · T at the bottom of the
mantle needs to match the traction − p n̂ at the top of
the outer core, where p denotes the perturbed pressure in
the fluid.

The weak form of the equation of motion (21) is obtained
by taking the dot product with an arbitrary test vector w,
integrating by parts over the volume M of the mantle and
crust, and imposing the stress-free surface boundary condi-
tion. This gives

�
M

� w · ∂ 2
t s d3x + �

M
2�w · (� × ∂ ts) d3x =

− �
M

∇w : (T + G) d3x + �
∑s

m(xs, t): ∇w(xs) d2xs

− �
M

�s · H · wd3x + �
CMB

pn̂ · w d2x , (22)

where we have used the continuity of traction at the CMB,
and where we have defined the second-order tensors

G = � [sg − (s · g)I ] (23)

and

H = ∇g . (24)

Because G is non-symmetric, let us note that our definition
of the double dot product between two second-order tensors
A and B is A : B = Aij Bij. The gravitational acceleration g
is the gradient of a potential, and thus H is a symmetric
second-order tensor.

3.3. The Wave Equation in the Outer Core

In the fluid outer core the equation of motion may be written
in the form

� (∂2
t s + 2� × ∂ts) = ∇(�∇ · s + �s · g) − �∇�

− ∇ · (�s)g , (25)

where � denotes the bulk modulus of the fluid. Under the
assumption of hydrostatic equilibrium prior to the earth-
quake, the equation of motion in the fluid may be rewritten
in the form

∂2
t s + 2� × ∂ ts = ∇(�-1 �∇ · s + s · g − �)

+ �-1g-2�(∇ · s) N2g , (26)

where g = |g| and

N2 = (�-1∇� − ��-1g) · g (27)

is the Brunt-Väisälä frequency [e.g., Valette, 1986; Dahlen
and Tromp, 1998; Chaljub et al., 2003; Chaljub and Valette,
2004].

In previous work [Komatitsch and Tromp, 2002b] we
made the assumption that the outer core was stably stratified
and isentropic, which meant that N2 = 0, and that perturba-
tions in gravity could be ignored, i.e., � = 0, based upon the
Cowling approximation. Chaljub and Valette [2004] recently
introduced a formulation of self-gravitation in a fluid me-
dium that is valid for N2 ≠ 0 and that does not require the
Cowling approximation. Following their work, and ex-
tending it by incorporating the effects of rotation, we will
obtain a weak implementation that does not involve these
approximations. This improved formulation is important in
practice because compared to the implementation in Komat-
itsch and Tromp [2002b] it does not require numerical itera-
tions on the fluid-solid coupling condition at the CMB or
at the ICB [Chaljub and Valette, 2004], thus making the
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SEM algorithm much simpler and more efficient, as will be
illustrated in Section 4.

We express the displacement field s in terms of a scalar
potential � and a vector u as

s = ∇� + u , (28)

where � and u remain to be determined. Note that in Komat-
itsch and Tromp [2002b] we expressed velocity ∂ ts in terms
of another potential � and a vector u instead. Upon substitu-
tion of the representation (28) in (26) we obtain

∇∂2
t � + ∂ 2

t u + 2� × ∇∂t� + 2� × ∂t u =

∇(�-1�∇2� + �-1�∇ · u + g · ∇� + g · u − �)

+ �-1g-2�(∇2� + ∇ · u)N2g . (29)

Let � be determined by

∂2
t � = �-1�∇ · (∇� + u) + g · (∇� + u) − � , (30)

then u satisfies

∂2
t u + 2� × ∂tu = − 2� × ∇∂t�

+ g-2[∂ 2
t � − g · (∇� + u) + �]N2g . (31)

At the ICB and CMB we need to exchange pressure p be-
tween the fluid and the solid. Using (28) and (30) we have

p = −�∇ · s = −�[∂2
t � (32)

− g · (∇� + u) + �] .

The weak form of (30) is obtained by multiplying it by an
arbitrary test function w and integrating by parts, using the
continuity of the normal component of displacement:

�
OC

�-1�w∂ 2
t �d3x = −�

OC
(∇w) · (∇� + u)d3x

+ �
OC

�-1�w[g · (∇� + u) − �]d 3x

+ �
CMB

wn̂ · sd2x − �
ICB

w n̂ · sd2x . (33)

The weak form of (31) is obtained by dotting it with a test
vector w:

�
OC

w · ∂ 2
t u d3x =

−2 �
OC

w · [� × (∂tu + ∇∂t�)]d3x

− �
OC

�-1g-2pN2w · gd3x , (34)

where we have used (32). Making the Cowling approxima-
tion involves simply setting � equal to zero in (30)–(34). If
we make the Cowling approximation and set the Brunt-
Väisälä frequency N equal to zero, as in Komatitsch and
Tromp [2002b], we obtain the following equation for �:

∂2
t � = �-1�∇ · (∇� + u) + g · (∇� + u) , (35)

and for u:

∂tu + 2� × u = − 2� × ∇� . (36)

The pressure p in (32) becomes

p = − �[∂2
t � − g · (∇� + u)] . (37)

In the absence of rotation (31) reduces to the scalar equation

∂2
t u + N2u = g-1[∂ 2

t � − g · ∇� + �] N2 , (38)

where u is determined by u = ug/g. Assuming further that
the Brunt-Väisälä frequency N equals zero implies u = 0 and

∂2
t � = �-1�∇2� + g · ∇� − � . (39)

Under these assumptions the pressure reduces to

p = −�(∂2
t � − g · ∇� + �) . (40)

Finally, if we also ignore the effects of self-gravitation we
obtain

∂2
t � = �-1�∇2� , (41)

and the pressure becomes

p = − �∂ 2
t � . (42)

This final approximation amounts to solving the acoustic
wave equation in the outer core.

In the domain decomposition between the fluid outer core
and the solid inner core and mantle, we match the normal
component of displacement by taking n̂ · s at the bottom of
the mantle and using it in the surface integral over the CMB
in (33), and by taking n̂ · s from the top of the inner core
and using it in the surface integral over the ICB in (33).
The continuity of traction is honored by calculating the fluid
pressure p from (37) based upon ∂ 2

t � in the fluid and the
normal component of displacement n̂ · s = n̂ · (∇� + u)
taken from the solid at the bottom of the mantle (CMB) or
at the top of the inner core (ICB).
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3.4. The Wave Equation in the Inner Core

The weak form of the equation of motion in the solid inner
core is similar to (22):

�
IC

�w · ∂ 2
t s d 3x + �

IC
2� w · (� × ∂ ts) d3x =

−�
IC

∇w : (T + G) d3x

−�
IC

�s · H · w d3x − �
ICB

pn̂ · w d2x . (43)

Note that the inner core-outer core interactions represented
by the surface integrals over the ICB in (33) and (43) also
honor continuity in traction and continuity of the normal
component of displacement and velocity.

3.5. Additional Terms to Model the Effect of the Oceans

We also seek to include the effect of the oceans, which is
mostly relevant for free-surface reflected phases, such as
PP, SS, and SP, and for the dispersion of Rayleigh waves.
Those areas of the Earth that are covered by oceans are
therefore subject to a slightly more complicated weak formu-
lation of the problem. The weak form of the equations of
motion in the solid Earth (mantle and crust) covered by
water is

�
M

� w · ∂ 2
t s d3x + �

M
2� w · (� × ∂ts) d3x =

−�
M

∇w : (T + G) d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs

− �
M

� s · H · w d3x + �
CMB

p n̂ · w d2x

−�
OCB

p n̂ · w d2x , (44)

where OCB denotes the ocean-crust boundary (i.e., the ocean
floor). We then need an expression for the fluid pressure p
at the OCB. In the oceans the waves satisfy the fluid wave
equation (26), which, making the Cowling approximation
and setting N2 = 0, can be rewritten as:

∂2
t s + 2� × ∂ts = −∇(p − s · g) . (45)

In Komatitsch and Tromp [2002b], we made the assumption
that the oceans were incompressible, which meant that the

entire water column moved as a whole as a result of the
normal displacement n̂ · s of the sea floor. We obtained the
local expression for pressure at the ocean bottom

p = �w h n̂ ·∂ 2
t s+2�w h n̂ · (� × ∂ts)+4�G �2

w h n̂ ·s , (46)

where �w denotes the density of sea water, and where the
local thickness of the oceans, h, can be taken from a global
bathymetry map. As a result, the weak form of the equation
of motion in the crust and mantle (44) becomes

�
M

�w · ∂ 2
t s d3x + �

M
2� w · (� × ∂ts) d3x

+ �
OCB

�wh (w · n̂)(n̂ · ∂ 2
t s) d2x =

− �
M

∇w : (T + G) d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs

− �
M

� s · H · w d3x + �
CMB

p n̂ · wd2x . (47)

This means that the effect of the oceans can be taken into
account very efficiently by a simple modification of the
mass matrix for the degrees of freedom located at the ocean
floor. Unfortunately, this approximation becomes invalid at
periods shorter than typically 20 s. Below this threshold,
the thickness of the ocean layer cannot be neglected, and
the fluid wave equation needs to be solved numerically in
the oceans and coupled at the ocean bottom with the solid
wave equation in the crust and the mantle. This is not an
easy task, because the compressional-wave speed in the
oceans is much smaller than that in the crust, and because
the thickness of the oceans varies considerably, complicating
mesh design.

3.6. Definition of the Wave Field on an Element

After meshing the model and expressing the seismic wave
equation in its weak form, we need to define basis functions
to represent the unknown displacement vector and the test
vector on each element. In most FEMs, both the geometry
of the problem and the vector fields are expressed using
low-degree polynomials. In the SEM, the geometry of the
curved elements is also usually defined using low-degree
polynomials, as explained above, but all unknown functions
are defined using higher-degree polynomials. This is a major
difference between SEMs and FEMs. In this regard, SEMs
are related to so-called h-p FEMs, which also use polynomi-
als of higher degree (but result in a non-diagonal mass ma-
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trix) [e.g., Guo and Babus̆ka, 1986]. Typically, a SEM uses
Lagrange polynomials of degree 4 to 10 for the interpolation
of functions. The n + 1 Lagrange polynomials of degree n
(Figure 5) are defined in terms of n + 1 control points -1 ≤
�� ≤ 1, � = 0, . . . , n, by

� n
�(�) = (48)

(� − �0) . . . (� − ��−1)(� − ��+1) . . . (� − �n)

(�� − �0) . . . (�� − ��−1)(�� − ��+1) . . . (�� − �n)
.

As a result of this definition, the Lagrange polynomials are
equal to either zero or one at any given control point:

� n
�(��) = 
�� , (49)

where 
 denotes the Kronecker delta. In a SEM, the control
points ��, � = 0, . . . , n, needed in the definition (48) are
chosen to be the n + 1 Gauss-Lobatto-Legendre (GLL) points
(Figure 5), which are the roots of (1 − � 2) P ′

n (� ) = 0, where
P ′

n denotes the derivative of the Legendre polynomial of
degree n [Canuto et al., 1988]. As will be explained later,
this choice is motivated by the fact that the combination
of Lagrange interpolants with GLL quadrature leads to an
exactly diagonal mass matrix. As a result of this choice,
each spectral element contains a grid of (n + 1)3 GLL points,
and each edge of an element contains a grid of (n + 1)2 GLL
points, as illustrated in Figure 6.

Functions f on an element are interpolated in terms of
triple products of Lagrange polynomials as

Figure 5. Lagrange interpolants of degree N = 4 on the reference
segment [−1, 1]. The N + 1 = 5 Gauss-Lobatto-Legendre points
can be distinguished along the horizontal axis. All Lagrange poly-
nomials are, by definition, equal to 1 or 0 at each of these points.
Note that the first and last points are exactly −1 and 1.

f (x(�, �, � )) (50)

≈ �
��,��,��

�,�,�=0
f ��� ��(� )��(�)��(� ) ,

where f ��� = f(x(��, ��, �� )) denotes the value of the func-
tion f at the GLL point x(��, ��, ��). To simplify the notation,
we omit the degree n as a superscript on the Lagrange
polynomials. Using the polynomial representation (50), the
gradient of a function, ∇f = ∑3

i=1 x̂i ∂i f, evaluated at the GLL
point x(��′, ��′, ��′), can be expressed as

∇f(x(��′, �
�′ , ��′))

≈ �
3

i=1
x̂i �(∂i� )�′�′�′ �

��

�=0
f ��′�′�′

�(��′) (51)

+ (∂i�)�′�′�′ �
��

�=0
f �′��′�′

� (��′)

+ (∂i� )�′�′�′ �
��

�=0
f �′�′��′

� (��′)� .

Figure 6. When a polynomial degree n is used to discretize the
wave field, each 3D spectral element contains a grid of (n + 1)3

Gauss-Lobatto-Legendre points, and each 2D face of an element
contains a grid of (n + 1)2 Gauss-Lobatto-Legendre points, as
illustrated here in the case of n = 4. These points are non-evenly
spaced. Low-order finite-element methods usually use n = 1 or
n = 2, while in the spectral-element method for seismic wave
propagation n is usually chosen between 4 and 10.
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Here x̂i, i = 1, 2, 3, denote unit vectors in the direction of
increasing x, y, and z, respectively, and ∂i, i = 1, 2, 3, denote
partial derivatives in those directions. We use a prime to
denote derivatives of the Lagrange polynomials, as in � ′

�.
The matrix ∂� /∂x is obtained by inverting the matrix ∂x /
∂�. We know that this inverse exists, because this is a
requirement that we imposed during mesh design (the Jacob-
ian never vanishes).

3.7. Numerical Integration

To solve the weak form of the equation of motion (19),
integrals need to be evaluated numerically over each ele-
ment. In the context of classical FEMs, one frequently uses
Gauss quadrature for this purpose. In a SEM, a Gauss-
Lobatto-Legendre (GLL) integration rule is used instead,
because it leads to a diagonal mass matrix when used in
conjunction with GLL interpolation points. Integrations over
elements with volume �e hence give

�
�e

f (x) d3x

= �1

-1
�1

-1
�1

-1
f (x(�, �, � )) J(�, �, � ) d� d� d�

≈ �
��,�� ,��

�,�,�=0
������ f ��� J��� , (52)

where J��� = J(��, ��, ��), and �� > 0, for � = 0, . . . , n,
denote the weights of the GLL quadrature [Canuto et al.,
1988].

On the fluid-solid boundaries in the model we need to
evaluate surface integrals in order to implement the coupling
based upon domain decomposition. At the elemental level,
using GLL quadrature, these surface integrations may be
written in the form

�
�b

f(x) d2x = �1

-1
�1

-1
f(x(�,�)) Jb(�,�) d� d�

≈ �
��,��

�,�=0
���� f �� J��

b , (53)

where �b denotes a surface element located on the fluid-
solid interface, and J��

b = Jb(��, ��) is the surface Jacobian (5)
evaluated at the GLL points. Note that in local and regional
simulations the implementation of the absorbing boundary
conditions represented by the last term in (19) also involves
numerical integrations of the form (53) along the edges of
the model.

Other authors [e.g., Priolo et al., 1994; Seriani, 1998] use
a different implementation of the SEM based on Chebyshev
polynomials. The main advantages are that the Gauss-Lo-
batto-Chebyshev integration rule is exact for the chosen
polynomial basis, while it is only approximate in the case
of GLL (see Section 3.11), and that the Gauss-Lobatto-
Chebyshev points and weights are known analytically (in
the GLL version they are computed numerically). The main
disadvantage of the approach is that it does not lead to a
diagonal mass matrix, and that therefore iterative solvers for
large matrix systems have to be implemented and an implicit
time-marching scheme is often used. This is technically
difficult, but has been used successfully even in 3-D [Seriani,
1997, 1998]. Because an unconditionally stable implicit time
scheme is used, this method is not sensitive to very high P-
wave speeds in small grid cells that can drastically reduce
the time step and therefore increase the cost of the explicit
time scheme used in the Legendre approach.

3.8. Discrete Form of the Weak Equation in the Solid
Regions

In the weak form of the solid wave equations (19), (22),
(43), and (47), we first need to expand the displacement
field s in terms of Lagrange polynomials:

s(x(�,�,� ), t) ≈ �
3

i=1
x̂i �

��,��,��

�,�,�=0
s���

i (t)�� (� )�� (�)�� (� ) ,

(54)

and the test vector w:

w(x(�, �, � )) = �
3

i=1
x̂i �

��,��,��

�,�,�=0
w�����(� )�� (�)��(� ) .

(55)

Because we use the same basis functions to express the
displacement and test vectors, the SEM is a so-called Galer-
kin method. The next step is to evaluate the integrals at the
elemental level based upon GLL quadrature. At the elemen-
tal level, for the first term on the left-hand side of the
equations of motion (19), (22), (43), and (47), known as the
mass matrix, this integration gives

�
�e

�w · ∂ 2
t s d3x = �1

-1
�1

-1
�1

-1
� (x(� ))

w(x(� ))· ∂ 2
t s(x(� ),t) J(� ) d3� . (56)

Upon substituting the interpolations (54) and (55) in (56),
using the quadrature (52), we obtain
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�
�e

�w · ∂ 2
t s d3x ≈ �

��,��,��

�,�,�=0
������ J��� ����

× �
3

i=1
w���

i s̈���
i (t) , (57)

where ���� = � (x(��, ��, ��)), and where a dot denotes
differentiation with respect to time. By independently setting
factors of w���

1 , w���
2 , and w���

3 equal to zero, since the weak
formulation (19) must hold for any test vector w, we obtain
independent equations for each component of acceleration
s̈ ���

i (t) at grid point (��, ��, ��). One can see that the value
of acceleration at each point of a given element s̈ ���

i (t) is
simply multiplied by the factor ������ ����J���, which
means that the elemental mass matrix is exactly diagonal.
This is one of the key ideas behind the SEM, and the main
motivation behind the choice of Lagrange interpolation at
the GLL points used in conjunction with GLL numerical
integration.

The weak form of the Coriolis term in (22), (43), and (47)
for an element �e is

�
�e

2�w · (� × ∂t s) d3r ≈ (58)

2� �
n

�,�,�=0
������ J������� �

3

i,j=1
w���

i �i3j ṡ
���
j .

Here �ijk denotes the alternating tensor. It is worth men-
tioning that the effect of rotation has a negligible impact on
the numerical cost of realistic global Earth simulations, both
in terms of memory requirements and CPU time, because,
considering that rotation is a small effect, the Coriolis
term (58) can be handled based on an explicit time scheme
and therefore added to the right-hand side of the wave equa-
tion after discretization at the global level.

The first integral on the right-hand side of (19), (22), (43),
and (47) that needs to be evaluated at the elemental level
is the so-called stiffness matrix. We can write

�
�e

∇w : T d3x ≈ �
��,��,��

�,�,�=0
�
3

i=1
w���

i

× ����� �
��′

�′=0
��′ J

�′��
e F�′��

i1 �′�(��′)

+ ���� �
��′

�′=0
��′ J

��′�
e F��′�

i2 �′� (��′)

+ ���� �
��′

�′=0
��′ J

���′
e F���′

i3 �′� (��′)� . (59)

where

Fik = �
3

j=1
Tij ∂j �k , (60)

and where F���
ik = Fik (x(��, ��, ��)) denotes the value of Fik

at the GLL point x(��, ��, ��). For brevity, we have intro-
duced index notation �i, i = 1, 2, 3, where �1 = �, �2 = �,
and �3 = �. In this notation, the elements of the mapping
matrix ∂�/∂x may be written as ∂i�j. In the case of self-
gravitation, in (59) the matrix T needs to be replaced by
T + G, as in (22), (43), and (47).

The value of the stress tensor T at the integration points
is determined by

T(x(��,��,��), t) =

c(x(��,��,��)) : ∇s(x(��,��,��), t) . (61)

Note that, as mentioned in the discussion after (8), we have
made no particular assumption on the structure of the stiff-
ness tensor c, i.e., the SEM can handle a fully anisotropic
tensor with 21 independent coefficients (see also Komatitsch
et al.[2000b] and Komatitsch and Tromp [2002a]). In our
SEM implementation, the ratio of CPU time requirements
with full anisotropy with 21 coefficients compared to an
isotropic simulation is approximately 1.15. To perform the
calculation (61), we first need to compute the gradient of
displacement ∇s at the GLL integration points. Upon differ-
entiating (54) we get

∂isj(x(��,��,��), t) =

��
n�

�=0
s���

j (t)� ′� (��)� ∂i� (��,��,��)

+ ��
n�

�=0
s���(t)� ′� (��)� ∂i� (��,��,��), j

+ ��
n�

�=0
s���

j (t)� ′� (��)� ∂i�(��,��,��) . (62)

In an anelastic medium, the stiffness matrix is still defined
by (59), except that the stress tensor (61) is

T(x(��,��,��), t) = c(x(��,��,��)) : ∇s(x(��,��,��), t)

− �
L

�=1
R�(x(��,��,��), t) , (63)

in accordance with (11). This implies that the five indepen-
dent components of the symmetric, zero-trace memory ten-
sor R� need to be stored on the grid for each standard linear
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solid. Because of this requirement, anelastic simulations
require significantly more memory than purely elastic calcu-
lations. In our SEM implementation based on three linear
solids in parallel, the ratio of memory requirements and
of CPU time requirements with and without anelasticity is
approximately 1.5. To reduce these additional requirements,
one can spread the memory variables across adjacent grid
points to mimic the expected anelastic behavior in average
[Zeng, 1996; Day, 1998].

The second term on the right-hand side of the weak form
of the equation of motion (19), (22), and (47) is the source
term, which may be expressed as

�
∑s

m(xs, t) : ∇w(xs) d2xs ≈ �
3

i=1
w���

i

× ��� �
��

�s=0
��s J�s�

b g�s��
i1 �′�(��s)

+ �� �
��

�s=0
��s J��s

b g��s�
i2 �′� (��s)

+ ���� J��
b g���s

i3 �′� (��s)� , (64)

where

gik = �
3

j=1
mij ∂j � k . (65)

For the point source (16) this reduces to

M : ∇w(xs) ≈ �
��,��,��

�,�,�=0
�
3

i=1
w���

i

� �
��,��,��

�,�,�=0
�� (��s)�� (��s)�� (��s)

× �G���
i1 �′� (��s)�� (��s)�� (��s)

+ G���
i2 ��(��s)�′� (��s)�� (��s)

+ G���
i3 ��(��s)�� (��s)�′� (��s)�	 , (66)

where we have defined Gik = ∑3
j=1 Mij ∂j �k, and where

G���
ik = Gik(x(��, ��, ��)) and x(��s, ��s, ��s) = xs.

Note that unlike many grid methods, in the context of
the SEM the source can be located anywhere in the model,
and does not need to correspond with a GLL grid point.
Because of the polynomial basis used in each element,
a point moment-tensor source gets spread over the entire

element that contains the point source after discretization.
This is consistent with the use of a polynomial basis and
is not a problem, except perhaps when receivers are placed
in the same spectral element as the source [Faccioli et
al., 1997], a situation almost never encountered in practice.

Self-gravitation in the context of the Cowling approxima-
tion contributes two terms to (22), (43), and (47). As men-
tioned earlier, the first contribution can be incorporated in
the calculation of the stiffness matrix by making the substitu-
tion T → T + G in (61), remembering that G is non-symmet-
ric. The second gravity contribution has the weak form

�
�e

�s · H · w d3r ≈ �
n

�,�,�=0
������ J��� ����

�
3

i,j=1
w���

i H���
ij s���

j . (67)

Note that this gravity term is diagonal. The self-gravitation
terms require no significant memory storage and have a
minor impact on CPU time.

3.9. Discrete Form of the Weak Equation in the Fluid
Regions

To obtain explicit expressions for the weak formulation of
the problem in the fluid regions, we first expand the potential
� in terms of Lagrange polynomials:

� (x(�, �, � ), t) ≈ �
��,��,��

�,�,�=0
� ���(t)�� (� )��(�)�� (� ) , (68)

and the scalar test function w:

w (x(�, �, � )) = �
��,��,��

�,�,�=0
w����� (� )�� (�)�� (� ) . (69)

Using this representation, the first term on the left-hand side
of the weak form of the outer-core wave equation (33) may
be written at the elemental level in the form

�
�e

�-1�w∂ 2
t � d3r ≈ �

�� ,�� ,��

�,�,�=0
������ J���

(���� )-1����w��� �̈ ���(t) . (70)

As for the left-hand side of the weak form in the solid
regions, this elemental ‘mass’ matrix is diagonal.

The first integral on the right-hand side of the fluid weak
formulation (33) becomes at the elemental level
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�
�e

∇w · ∇� d3r ≈ �
�� ,�� ,��

�,�,�=0
w���

����� �
��′

�′=0
��′ J�′��

e (∂1�)�′���′�(��′)

+ ���� �
��′

�′=0
��′ J��′�

e (∂2�)��′��′� (��′)

+ ���� �
��′

�′=0
��′ J���′

e (∂3�)���′�′� (��′)� , (71)

where

(∂i�)��� = �
��

�=0
���′�′�′�(��′)∂i�

+ �
��

�=0
��′��′�′�(��′)∂i�

+ �
��

�=0
��′�′��′� (��′)∂i� . (72)

The second term on the right-hand side of the weak form
of the wave equation in the outer core (33), which arises in
the presence of self-gravitation and rotation, is

�
�e

�-1�w g · (∇� + u) d3r ≈

�
n

�, �, �=0
������ J���w���(����)-1����

�
3

i=1
g���

i [(∂i�)��� + u���
i ] , (73)

where (∂i�)���, and where we have made the Cowling ap-
proximation.

The weak form of (34) is, in fact, entirely diagonal, which
means that one needs to solve a second-order ordinary differ-
ential equation at each GLL point. Making the Cowling
approximation and assuming that N2 = 0 reduces the problem
to solving the first-order equation (36), which may be accom-
plished based upon a Runge-Kutta scheme, as discussed in
Komatitsch and Tromp [2002b].

3.10. Coupling Between Fluid and Solid Regions

The final term on the right-hand side of the weak forms of
the equation of motion in the solid regions (22), (43), and
(47) is the surface integral over the CMB or ICB that repre-
sents the interactions in traction and normal velocity between

the solid mantle, the liquid core, and the solid inner core.
A key ingredient of our domain decomposition technique is
that, since we have a conforming mesh everywhere, i.e., the
grid points on the CMB are common to the meshes in the
mantle and in the outer core and the grid points on the ICB
are common to the meshes in the outer and inner core, we
can take the value of pressure at a given grid point from the
fluid side and use it directly in the surface integral on the
solid side. Therefore, no interpolation is needed at a fluid-
solid interface. This type of matching is referred to as point-
wise matching in the finite-element literature. At the elemen-
tal level on a boundary, the surface integrals over the CMB
and the ICB in the solid regions may therefore be ex-
pressed as

�p n̂ · wd2x ≈ �
��,��

�,�=0
���� J��

b p��(t) �
3

i=1
���

i n̂��
i ,

(74)

where Jb is the surface Jacobian (5), n̂ is the normal (4),
and where we calculate the pressure p based upon (37),
taking the values of the right-hand side terms from the
fluid side.

Similarly, the two surface integrals over the CMB and the
ICB in the weak form of the equation of motion in the outer
core (33) may be expressed as

�w n̂ · s d2x ≈ �
��,��

�,�=0
���� J��

b w�� �
3

i=1
s��

i n̂��
i . (75)

3.11. Accuracy of the Method

In a standard FEM, low-degree polynomials (usually of de-
gree 1 or 2) are used to discretize functions, and therefore
the accuracy of the method can mainly be adjusted based
upon the typical size of an element in the mesh, �h, i.e.,
based upon mesh density. This means that in a traditional
FEM, mesh design is the main parameter that controls accu-
racy. In a SEM, however, high-degree Lagrange interpolants
are used to express functions. Therefore, the polynomial
degree used to represent functions on an element, n, is an
additional parameter that can be used to adjust the accuracy
of the method.

Even on a unit cube with homogeneous material proper-
ties, the GLL numerical integration rule is exact only for
polynomials of degree 2n − 1. Any integration on the refer-
ence element involving the product of two polynomials of
degree n –the displacement and the test function– is never
exact, even in this simplest case. For deformed elements
there are additional errors related to curvature [Maday and
Rønquist, 1990]; the same is true for elements with heteroge-
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neous material properties. Thus a diagonal mass matrix is
obtained in the Legendre SEM by purposely selecting
a numerical integration rule that is not exact (but of course
still very accurate) for the polynomial basis chosen (a process
known as sub-integration in the finite-element literature). In
this respect, the SEM is related to FEMs in which mass
lumping is used to avoid the costly resolution of the non-
diagonal system resulting from the use of a Gauss quadrature
rule [e.g., Cohen et al., 1993]. As mentioned above, a differ-
ent choice is made in the Chebyshev SEM used by some
authors [e.g., Priolo et al., 1994; Seriani, 1998], in which
an integration rule that is exact for the polynomial basis
chosen is used, with the consequence that the exactly diago-
nal mass matrix is lost.

One of the shortcomings of the SEM for elastic media is
that to our knowledge no theoretical analysis of its accuracy
is available in the literature. For other classical numerical
techniques such an analysis is usually performed in the spec-
tral domain for a regular grid in a homogeneous medium.
In the case of the SEM doing so turns out to be challenging
because the polynomial degree used to discretize the wave
field is high and also because the GLL numerical integration
points are non-evenly spaced, which makes it technically
difficult to use a standard Fourier analysis to perform the
accuracy study, even in the case of a regular mesh of spectral
elements in a homogeneous medium. In addition, one of the
main ideas behind the use of the SEM is to take advantage
of its geometrical flexibility and to therefore use highly-
distorted non-regular meshes. On such meshes, performing
an accuracy analysis is even more difficult because there
are additional error terms associated with the distortion of the
mesh elements, as in any finite element or spectral method
[Maday and Rønquist, 1990]. To our knowledge, only Tordj-
man [1995] and Cohen and Fauqueux [2000] have attempted
such a theoretical accuracy study for the SEM in the acoustic
case, and Seriani and Priolo [1994] have addressed the issue
based on a numerical study, also in the acoustic case.

Therefore, by trial and error, heuristic rules of thumb have
emerged in order to determine how to select the polynomial
degree to use in practice for an elastic SEM with a non-
regular deformed mesh and a heterogeneous medium. Basi-
cally, we have used the main conclusions of Seriani and
Priolo [1994] in the acoustic case and checked numerically
by performing numerous benchmarks and comparisons to
analytical solutions for simple cases that these conclusions
extend reasonably well to the elastic case. Based on these
numerical experiments, we can say that using polynomial
degrees lower than typically 4 leads to similar inaccuracies
as with standard FEMs [Marfurt, 1984], i.e., a large amount
of numerical dispersion, which means that with such low
degrees the advantages of using a SEM are lost. In contrast,

if the polynomial degree is very large, e.g., greater than 10,
the SEM is spatially very accurate, but the computational
requirements become prohibitive because of the size of the
calculations related to matrix multiplications involving the
full stiffness matrix, a process with a cost of O(n4) in 3-D,
i.e., the numerical cost of the technique becomes prohibitive.
Another problem in the case of a high degree is that the non-
evenly spaced GLL numerical integration points become
clustered toward the edges of each spectral element (the
spacing between the first two GLL points varies approxi-
mately as O(n-2)), and as a result of the small distance
between these first two points, very small time steps have
to be used to keep the explicit time-marching scheme stable
(see Section 4), which drastically increases the cost of the
Legendre SEM. Therefore, the rule of thumb is that for most
wave propagation applications, polynomial degrees between
approximately 4 and 10 should be used in practice.

In our case, we always use a polynomial degree n = 4. In
order to obtain accurate results, we use another heuristic
rule of thumb that says that for this polynomial degree the
average grid spacing �h should be chosen such that the
average number of points per minimum wavelength �min in
an element, (n + 1)�min/�h, be roughly equal to 5. It would
be of interest to study this more precisely in the 3-D elastic
case based on numerical experiments with different polyno-
mial degrees and different values of the grid spacing, and
to see how this accuracy analysis would compare to similar
studies for more classical numerical techniques such as the
finite-difference method. Such a comparative study should
include both body and surface waves, the former being more
difficult to model accurately than the latter, in particular for
methods that are not based on a variational formulation of
the wave equation. Schubert [2003] has started to study this
problem in the 1-D case.

4. TIME INTEGRATION OF THE GLOBAL SYSTEM

In each individual spectral element, functions are sampled
at the GLL points of integration. As can be seen in Figure 5,
these points include −1 and 1, i.e., each element has grid
points located exactly on its edges, and therefore shares
these points (on its faces, edges, or corners) with neighboring
elements in the spectral-element mesh. Therefore, as in
a classical FEM, we need to distinguish the local mesh of
grid points inside each element from the global mesh of
points in the entire structure, which contains many points
that are shared amongst several elements. In addition, the
number of elements that share a given point (the so-called
valence of a point) can vary and take any value in the mesh
(in other words, the mesh can be non-structured), unlike in
a regular mesh of cubes, in which the valence of a shared
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point is always 2 inside a face, 4 on an edge, and 8 at a
corner.

Therefore, the first required step is to uniquely number
the global points in order to define a mapping between the
local mesh and the global mesh. This can be accomplished
using efficient finite-element global numbering libraries that
either take advantage of the known and fixed topology of
the mesh (valence and list of neighbors) to uniquely assign
a global point number to each local point inside a given
spectral element, or perform a triple sorting algorithm on
each coordinate of the points (sorting by increasing x, then
by increasing y for the same x, then by increasing z for the
same x and y), again to detect common points and uniquely
assign a global point number to each local point. Once this
mapping has been defined, the internal forces computed
separately on each element need to be summed at common
grid points (in the finite-element literature this step is called
‘assembling the system’). On a parallel computer, this part
is the only step in the SEM that involves communications
between adjacent mesh slices, as we will see in Section 5,
because different slices located on different processors can
share common points on their respective edges.

Let U denote the global displacement vector in the solid
regions of the model, i.e., U contains the displacement vector
at all the grid points in the global mesh, classically referred
to as the global degrees of freedom of the system. The time
evolution of the global system is governed by an ordinary
differential equation of the general form

MsÜ + KsU + Bsp = Fs , (76)

where Ms denotes the global diagonal mass matrix, Ks the
global stiffness matrix, Bsp the fluid-solid coupling term
involving the pressure p that represents the boundary interac-
tions at the CMB or ICB, and Fs the earthquake source term.
As mentioned above, one can take advantage of the fact that
the global mass matrix is diagonal by using a fully explicit
second-order finite-difference scheme to march this second-
order ordinary differential equation, moving the stiffness
term to the right-hand side. The memory-variable equation
(13) is solved for R� using a modified second-order Runge-
Kutta scheme in time, since such schemes are known to be
efficient for this problem [Carcione, 1994]. We do not spread
the memory variables across the grid.

In the fluid regions of the model (the outer core in the case
of the global Earth), we similarly get an ordinary differential
equation of the general form:

Mf Ẍ + Kf X + Bf U = 0 , (77)

where X is the global potential, Mf denotes the global diago-
nal generalized mass matrix, Kf the global generalized stiff-

ness matrix, and Bf U the global fluid-solid coupling term
involving the solid displacements U that represents the
boundary interactions at the CMB or ICB (note that there
is no source term in the fluid because the earthquake source
is always located in the solid).

Compared to Komatitsch and Tromp [2002a, b], the im-
proved formulation in the fluid region developed in Chaljub
and Valette [2004] (see also Section 3.3 above) leads to a
time-marching scheme in which there is no need to iterate
on the fluid-solid coupling condition, i.e., following Chaljub
and Valette [2004] we simply first solve (77) in the fluid
and then (76) in the solid. The fluid-solid coupling term is
evaluated based on the new values on the fluid side computed
by solving (77).

The explicit time schemes introduced above are condition-
ally stable, i.e., for a given mesh and a given model there
exists an upper limit on the time step above which calcula-
tions are unstable. One can define the Courant stability num-
ber of the explicit time integration schemes C = �t(v/�h)max,
where �t is the time step chosen and (v/�h)max denotes
the maximum ratio of P-wave speed and grid spacing. The
Courant stability condition [Courant et al., 1928] then says
that the Courant number should not be chosen higher than
an upper limit:

C ≤ Cmax (78)

that determines how large the time step can be while main-
taining a stable simulation. Unfortunately, for the SEM to
our knowledge there is no published theoretical analysis of
how to determine the maximum Courant number Cmax. The
heuristic rule of thumb that we use in practice is that for
regular meshes Cmax 
 0.5, while for very irregular meshes
with distorted elements and/or very heterogeneous media
Cmax reduces to approximately 0.3 to 0.4. As for the issue
of accuracy in Section 3.11, performing such a theoretical
analysis for the SEM in the elastic case would be very
difficult, even for a regular mesh in a homogeneous medium,
because of the high polynomial degrees used, and because
of the fact that the GLL numerical integration points are
non-evenly spaced.

5. IMPLEMENTATION ON PARALLEL COMPUTERS

The mesh designed in Section 2 is too large to fit in memory
on a single computer. Modern parallel computers such as
clusters or grids of computers have a distributed memory
architecture. The standard approach for programming paral-
lel machines with distributed memory in a portable way is
to use a message-passing methodology, usually based upon
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a library called MPI [e.g., Gropp et al., 1994], an acronym
for ‘Message Passing Interface’.

Because we use an explicit time-marching scheme (see
Section 4), our SEM algorithm mostly consists in small
local matrix-vector products in each spectral element, which
implies that the processors spend most of their time doing
actual calculations, and only a small amount of time in the
communication step. Hence, the SEM algorithm is not very
sensitive to the speed of the network connecting the different
processors. It can therefore run on high-latency networks
such as clusters of PC computers, sometimes referred to as
‘Beowulf’ machines, or on grids of computers.

In order to run an SEM algorithm on such parallel ma-
chines, we need to split the mesh into as many slices as the
number of processors we use on the machine. Plate 1 shows
how the mesh of Figure 3 for the global Earth is split into
slices in the case of calculations distributed over 1944 proc-
essors (6 chunks of 18 × 18 slices each), as will be used in
Section 6. Calculations can be performed locally by each
processor on the spectral elements that constitute the mesh
slice it carries, and one communication phase is then required
at each time step of our time-marching algorithm in order
to sum the internal forces computed at the common faces,
edges, and corners shared by mesh slices carried by different
processors. Therefore, MPI communication tables that or-
chestrate the (constant) sequence of messages that needs to
be exchanged amongst the slices at each time step need to
be created once and for all when the mesh is built.

6. NUMERICAL RESULTS

In previous work, synthetic seismograms for 3-D Earth mod-
els calculated based on the SEM have been successfully
compared to broadband data, both for sedimentary basins
[Komatitsch et al., 2004; Liu et al., 2004] and at a global
scale [Komatitsch and Tromp, 2002b; Chaljub et al., 2003;
Komatitsch et al., 2003; Tsuboi et al., 2003; Capdeville et
al., 2003]. Here, as an application of the SEM to a large-
scale 3-D problem, we combine all the complications of
a fully 3-D Earth model. The simulations include anisotropy
(the reference 1-D PREM upper mantle model is anisotropic,
see Komatitsch and Tromp [2002a] for details), attenuation,
self-gravitation, the oceans, rotation, ellipticity, topography
and bathymetry, a 3-D mantle model and a 3-D model of
crustal wave speeds, as explained in Section 2 (see also
Komatitsch and Tromp [2002b] for more details on these
models).

The SEM calculations are performed on the Earth Simula-
tor at the Japan Agency for Marine Earth Science and Tech-
nology (JAMSTEC). This computer has 640 8-processor
compute nodes, for a total of 5120 processors. Each node

has 16 gigabytes of shared memory, for a total of 10 terabytes
of memory. The peak performance per node is 64 gigaflops
(i.e., 64 billions of floating-point operations per second) and
the total peak performance is 40 teraflops. On 48 nodes of
the Earth Simulator we can model periods of 9 s and
a typical simulation lasts 10 hours, 243 Earth Simulator
nodes enable us to reach periods of 5 s, and on 507 nodes this
is further reduced to a shortest period of 3.5 s [Komatitsch et
al., 2003; Tsuboi et al., 2003]. To put these numbers in
perspective, typical normal-mode summation codes that cal-
culate semi-analytical synthetic seismograms for 1-D Earth
models are accurate down to 6 s. In other words, the Earth
Simulator allows us to simulate global seismic wave propa-
gation in fully 3-D Earth models at periods shorter than
current seismological practice for 1-D spherically symmetric
models.

We model the September 2, 1997, 210 km deep Colombia
earthquake, which had a magnitude of Mw = 6.7. We use
the mesh in Figures 3, 4 and Plate 1 and a polynomial degree
n = 4, which gives a grid composed of 82 million spectral
elements and a total of 14.5 billion grid points. At the surface
of the model the size of the spectral elements is 1.04° in the
two horizontal directions (i.e., the average spacing between
adjacent grid points is 0.026°, or equivalently 2.9 km). The
time step is �t = 72 ms, and we propagate the signal for
3600 s. Receivers from the global network of seismic stations
record the three components of displacement. Figure 7 shows
the results of a simulation on the Earth Simulator accurate
down to 5 s. The source is the CMT solution taken from
the Harvard catalog. The vertical component data are lined
up on the Rayleigh wave. Note the remarkable fit both at
short and long periods. In Figure 8 we present the same
results centered on the P-wave arrival. Note the distinct
pP and sP arrivals, and also note that the sP arrivals are
consistently late in the SEM synthetic seismograms, which
implies that the shear wave speed model we use is too slow
in the mantle wedge above the subducting plate.

In the case of large earthquakes, the finite size of the
earthquake source must be taken into account, and an equiva-
lent CMT cannot be used. Plate 2 shows a snapshot of such
a finite-fault simulation for the November 3, 2002, Denali
fault, Alaska, earthquake, which had a magnitude of Mw =
7.9 and ruptured several fault segments over a total distance
of 220 km [Eberhart-Phillips et al., 2003]. The finite source
model, which is represented by 475 point double couple
solutions, was determined by Ji et al. [2004]. Because the
earthquake rupture propagates in a southeasterly direction
along the Denali fault, the waves that propagate along the
West coast of the United States have large amplitudes. This
directivity effect due to the finite size of the earthquake fault
is captured well by the SEM simulations. We show full
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Plate 1. The spectral-element method uses a mesh of hexahedral
finite elements on which the wave field is interpolated by high-
degree Lagrange polynomials on Gauss-Lobatto-Legendre integra-
tion points. In order to perform the calculations on a parallel com-
puter with distributed memory, the mesh in Figures 3 and 4 is split
into slices based upon a regular domain-decomposition topology.
Each slice is handled by a separate processor. Adjacent slices
located on different processors exchange information about com-
mon faces and edges based upon a message-passing methodology.
The top figure shows a global view of the mesh at the surface,
illustrating that each of the six sides of the so-called ‘cubed sphere’
mesh is divided into 18 × 18 slices, shown here with different
colors, for a total of 1944 slices. The bottom figure shows a close-
up of the mesh of 48 × 48 spectral elements at the surface of each
slice. Within each surface spectral element we use 5 × 5 = 25 Gauss-
Lobatto-Legendre grid points, which translates into an average grid
spacing of 2.9 km (i.e., 0.026°) on the entire Earth surface.

Plate 2. Snapshot of the propagation of seismic waves in the
Earth generated by the November 3, 2002 Denali fault, Alaska,
earthquake. Note the large amplification of the waves along the
western coast of the United States.
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Figure 7. Comparison of vertical component data (solid line) and
spectral-element synthetic seismograms (dashed line) for the Sep-
tember 2, 1997, 210 km deep Colombia earthquake. Both the
synthetic seismograms and the data are lowpass-filtered at 5 s. The
source azimuth measured clockwise from due North is indicated
on the left, and the station name and epicentral distance are on the
right. Records are aligned on the Rayleigh wave.

waveform comparisons between data and synthetic seismo-
grams in Figure 9. Note that the SEM synthetic seismograms
capture the dispersion of the Rayleigh waves remarkably
well.

7. CONCLUSIONS

We have presented a detailed description of the spectral
element method for 3-D seismic wave propagation. The
full complexity of Earth models, i.e., surface topography,
attenuation, anisotropy and fluid-solid interfaces, and, in the
case of global simulations, self-gravitation, rotation and the
oceans, are taken into account. We have used an improved
SEM formulation for the outer core in the presence of self-
gravitation and rotation that has the important benefit that
it does not require iterations on the fluid-solid coupling

Figure 8. Comparison of vertical component data (solid line) and
spectral-element synthetic seismograms (dashed line) for the Sep-
tember 2, 1997, 210 km deep Colombia earthquake. Both the
synthetic seismograms and the data are lowpass-filtered at 5 s. The
source azimuth measured clockwise from due North is indicated
on the left, and the station name and epicentral distance are on the
right. Records are aligned on the P wave. Note the distinct pP and
sP arrivals at 60 s and 80 s after the P wave, respectively. The
amplitudes in this plot are more than ten times smaller than those
in Figure 7.

condition at the CMB or at the ICB, thus making the SEM
algorithm much simpler and more efficient numerically. The
method has been implemented on a parallel computer with
distributed memory based upon a message-passing method-
ology.

In the current implementation we make the Cowling ap-
proximation, make the assumption that the Brunt-Väisälä
frequency is zero, use an approximate treatment of the effect
of the oceans, and rely on a simple one-way treatment for
absorbing boundaries in the case of regional or local simula-
tions. Effects of the Cowling approximation and a non-
zero Brunt-Väisälä frequency are only relevant at very long
periods (typically > 500 s). Improved implementations of



224 THE SPECTRAL-ELEMENT METHOD IN SEISMOLOGY

Figure 9. Comparison of vertical component data (solid line) and
spectral-element synthetic seismograms (dashed line) for the No-
vember 3, 2002, Denali fault, Alaska, earthquake. Both the syn-
thetic seismograms and the data are lowpass-filtered at 5 s. The
source azimuth measured clockwise from due North is indicated
on the left, and the station name and epicentral distance are on the
right. Records are aligned on the P wave.

the oceans are under investigation and will be the focus of
future work.

We have used the Japanese Earth Simulator to perform
a direct comparison between synthetic seismograms calcu-
lated for a realistic fully 3-D Earth model and observed
seismograms for two large earthquakes. This comparison
shows that our spectral-element simulations capture general
features of the Earth’s 3-D structure fairly well. However,
it is also apparent that the agreement between synthetic and
observed seismograms decreases at high frequency due to the
fact that current 3-D Earth models are not well constrained at
such high frequencies.

In the near future, we believe that the SEM will become
the method of choice for the simulation of seismic wave
propagation in fully 3-D Earth models. The main difficulty
is the cost of large simulations, as is the case for all methods

that are based upon the full wave equation discretized on
a grid. However, because of the continuous evolution of
computer technology, a small group of researchers can now
assemble a PC cluster at a reasonable cost in a reasonable
amount of time and perform large-scale 3-D simulations in-
house, and at the same time, very large machines such as the
Earth Simulator in Japan or large geographically-distributed
networks of clusters of computers (known as GRIDs) start
to provide enough memory and processors to run complex
models at unprecedented resolution. This has already led to
Centroid-Moment Tensor (CMT) source inversion in fully
3-D Earth models [Liu et al., 2004], opening the door to
full waveform tomographic inversions.

The full source code of our program SPECFEM3D is
freely available for academic, non-commercial research from
www.geoframework.org.
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Bérenger, J. P., A Perfectly Matched Layer for the absorption of
electromagnetic waves, J. Comput. Phys., 114, 185–200, 1994.

Bouchon, M., C. A. Schultz, and M. N. Töksoz, Effect of three-
dimensional topography on seismic motion, J. Geophys. Res.,
101, 5835–5846, 1996.



KOMATITSCH ET AL. 225

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
methods in fluid dynamics, Springer-Verlag, New York, 1988.

Capdeville, Y., E. Chaljub, J. P. Vilotte, and J. P. Montagner,
Coupling the spectral element method with a modal solution for
elastic wave propagation in global Earth models, Geophys. J.
Int., 152, 34–67, 2003.

Carcione, J. M., The wave equation in generalized coordinates,
Geophysics, 59, 1911–1919, 1994.

Carcione, J. M., D. Kosloff, and R. Kosloff, Wave propagation
simulation in a linear viscoelastic medium, Geophys. J. Int., 95,
597–611, 1988.

Chaljub, E., Modélisation numérique de la propagation d’ondes
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itation thesis, Université Paris VI Jussieu, Paris, 1987, thèse
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