Computing at SIO
or
Learning to Talk Instead of Point

Duncan Agnew
Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing – that’s why we call it research.
Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing – that’s why we call it research.
- And so, anything you do, you will probably do many times – and there are very few things you won’t do more than once.
Doing Science (Instead of Taking Classes)

• Time scale is years, not weeks: your memory is not that good.

• You will, eventually, not know what you are doing – that’s why we call it research.

• And so, anything you do, you will probably do many times – and there are very few things you won’t do more than once.

• And part of science is being able to reproduce your results.
Doing Science (Instead of Taking Classes)

- Time scale is years, not weeks: your memory is not that good.
- You will, eventually, not know what you are doing – that’s why we call it research.
- And so, anything you do, you will probably do many times – and there are very few things you won’t do more than once.
- And part of science is being able to reproduce your results.
- For all these reasons you will benefit enormously from having all your computation procedures written down so that you can redo them.
A Research Ideal

What is the best computational approach to achieve this?

Options are GUI (Graphical User Interface) or a (actually many) computer language.
Advantages of GUI’s (Pointing)

• Easy to learn (until they get complicated)
Advantages of GUI’s (Pointing)

• Easy to learn (until they get complicated)

• Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.
Advantages of GUI’s (Pointing)

- Easy to learn (until they get complicated)
- Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.

But

- Do not (usually) keep a record.
Advantages of GUI’s (Pointing)

• Easy to learn (until they get complicated)

• Well-suited to nonverbal activities, for example, graphical editing, as in Photoshop.

But

• Do not (usually) keep a record.

• Become unworkable as complexity of task increases – how would you like to use one for searching in Google?
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.

• Unless you use speech-recognition (don’t), gives a permanent record.
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.
• Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

• You will need to learn an editor just to talk to the computer.
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.
• Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

• You will need to learn an editor just to talk to the computer.
• Language complexity limited only by the skill of the developer.
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.
• Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

• You will need to learn an editor just to talk to the computer.
• Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn – though these are all “designed” languages, which can help.
Using a Language ("Talking")

Advantages

• Language capability limited only by the skill of the developer.

• Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

• You will need to learn an editor just to talk to the computer.

• Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn – though these are all “designed” languages, which can help.
Using a Language ("Talking")

Advantages

- Language capability limited only by the skill of the developer.
- Unless you use speech-recognition (don’t), gives a permanent record.

Disadvantages

- You will need to learn an editor just to talk to the computer.
- Language complexity limited only by the skill of the developer.

Like any new language, difficult to learn – though these are all "designed" languages, which can help.
Language I: Unix (aka shell)

cat << XXX | fgrep South | sort -n +8
1946 04 01 12 29 03 53.362 -162.854 8.6 165 South of Alaska
1950 08 15 14 09 36 28.290 96.657 8.6 3300 Eastern Xizang–India border
1952 11 04 16 58 27 52.756 160.056 9.0 - Off east coast of Kamchatka
1957 03 09 14 22 33 51.587 -175.419 8.6 - Andreanof Islands, Aleutians
1960 05 22 19 11 17 -38.294 -73.054 9.6 1260 Near coast of central Chile
1963 10 13 05 17 55 44.763 149.801 8.6 - Kuril Islands, Russia
1964 03 28 03 36 12 61.019 -147.626 9.2 236 Southern Alaska, United States
1965 02 04 05 01 21 51.210 178.498 8.7 - Rat Islands, Aleutian Islands
2004 12 26 00 58 52 3.270 95.860 9.3 227898 Off W coast of N Sumatera
2005 03 28 16 09 37 2.050 97.060 8.6 1324 Northern Sumatera, Indonesia
2007 09 12 11 10 26 -4.440 101.370 8.5 25 Southern Sumatera, Indonesia
XXX

We will start with this, as it is the most basic, and you can actually do quite a lot with existing Unix tools.
echo X | awk '{pi=3.14159265
for(i=0;i<=1000;i++) {
 t1=2*pi*i/1000
 t2=t1*n
 x=cos(t1)+a*cos(t2)
 y=sin(t1)+a*sin(t2)
 printf"%.4f %.4f0,x,y
}
}' n=$1 a=$2 > tmp

This is a very simple programming language.
function vector_xyz=xform_neu_to_xyz(xyz,vector_neu)
 vector_neu=vector_neu(:);
 vector_neu_cov=diag(vector_neu(4:6).*^2);
 vector_neu=vector_neu(1:3);
 a=6378137;
 f_inv=298.257223563;
 f=1/f_inv;
 e2=2*f-f^2;
 p=sqrt(xyz(1)^2+xyz(2)^2);
 r=sqrt(p^2+xyz(3)^2);
 mu=atan(xyz(3)/p*((1-f)+e2*a/r));
 long=atan2(xyz(2),xyz(1));
 lat=atan2(xyz(3)*(1-f)+e2*a*sin(mu)^3,(1-f)*(p-e2*a*cos(mu)^3));
 rot= [-sin(lat)*cos(long) -sin(long) cos(lat)*cos(long)
 -sin(lat)*sin(long) cos(long) cos(lat)*sin(long)
 cos(lat) 0 sin(lat)];
 vector_xyz=rot*vector_neu;
 vector_xyz_cov=rot*vector_neu_cov*rot';
 vector_xyz_std=diag(vector_xyz_cov).^(.5);
 vector_xyz=[vector_xyz;vector_xyz_std];

A tool of choice for mathematical programming – except for speed.
function juldat(it)
dimension it(*)

! Julian Date from Gregorian date, Algorithm from p. 604, Explanatory
! Supplement Amer Ephemeris & Nautical Almanac (cf Comm CACM, 11, 657 (1968)
! and 15, 918 (1972)) Valid for all positive values of Julian Date
juldat=(1461* (it(1)+4800+(it(2)-14)/12))/4
1 + (367*(it(2)-2-12*((it(2)-14)/12)))/12
2 - (3*((it(1)+4900+(it(2)-14)/12)/100))/4+it(3)-32075
return
end

You will need to know this for dealing with “legacy code” or writing your own.
A very simple, but powerful, plot program, which makes much better graphics than Matlab does.
Language VI: GMT

gmtset GRID_CROSS_SIZE 0 ANNOT_FONT_SIZE_PRIMARY 10
gmtset PAGE_ORIENTATION portrait
pscoast -Rg -JN0/3i -Bg30 -Dc -Ggray -W -K > tmp1.ps
cat tmp2 | psxy -G255/255/255 -R -J -Sc.04i -O >> tmp1.ps

A very powerful, and complicated, plot program, which is excellent for geophysical and oceanographic data.
The \textbf{magnitude} of the vector is its length, for which the notation and definition are

\begin{equation}
\label{eq-mag}
| \bv | = \sqrt{ v_1^2 + v_2^2 + v_3^2 }
\end{equation}

A \textbf{unit vector} is one whose magnitude is 1; we usually designate a unit vector in the direction of \bv by $\hat{\bv}$, and designate unit vectors that are orthogonal (at right angles) by the letter \be.

This is (many of us think) how you should write your papers. For scientific writing, MS Word is a poor substitute (though lots of people use it).