Basics of the awk Programming Language

Introduction

We now turn to another Unix tool, the awk programming language. I have
chosen this language as the first one we will discuss because it has relatively
few features — but still enough to be useful: I certainly use it for lots of the
“small tasks” that often turn up. Also, you can learn awk more quickly because
it is an “interpreted” language; the awk processor reads what you write and
executes it as it reads. The cycle of writing a program and fixing errors thus is
relatively quick; since learning a programming language, and developing code,
is largely about finding errors, you learn the language faster.

A brief digression on language types: many computer languages are not
interpreted. Rather, what happens is that first they are converted from what
you write to what the computer executes by by a compiler. In the simplest
case, the compiler produces object code that can be executed by the com-
puter directly; more often, this code is first linked with object code for other
programs to produce the final executable. The object code, being directly in-
terpretable by the computer, is very fast; but the step of first compiling the
object code itself takes time. Interpreted languages run much more slowly,
but this doesn’t matter for small tasks, where the computation time will be
much less than the time you spend on development.

These notes, like the others I have prepared, are not complete; awk has
many features I will not discuss. The goal is to provide enough that you can
do useful things with awk programs — and more importantly, enough for you
to get the feel of what it is like to write programs. Section describes some of
the things that I do not cover and that you might want to learn about,

A First Example

Most introductions to awk start with its ability to match and print patterns,
which makes it a more powerful version of sed. I will instead start with a
numerical example, as it is easier to see what is being done. For historical
reasons' angles are often written in sexagesimal notation, in degrees, min-
utes, and seconds, with the last being decimalized: for example, 23°41'18".
But most trigonometric functions take arguments in either decimal degrees or

radians. The conversion is just arithmetic, which we can program in awk as:

! Namely, that the Babylonians used base-60 notation, and also were the first as-
tronomers, who used angles to describe where things were.

BEGIN{dr=3.14159265/180.}
{
d=$1+($2+$3/60) /60
print d,dr*d
}

(we use this font for program code). If we put this in a file called baby? we
could then run it as follows:

% awk -f baby
2341 18

23.6883 0.413439
12 34 56

12.5822 0.219601
60 60 60

61.0167 1.06494
100

1 0.0174533
000

00

1300

1.5 0.0261799
-100

-1 -0.0174533
-1300

-0.5 -0.00872665
/A

What is going on here? The shell invokes the awk interpreter, for which
a -f flag means “what follows is the name of a file of awk commands to be
interpreted”. The first thing the interpreter sees is a BEGIN{, which means “run
the following commands until you see a }”. There is only the one command,
which sets the variable dr, used for conversion from degrees to radians.® The
second pair of braces mean “read in a line from standard input, perform the
commands between the braces, and repeat this until there are no more lines”.
Typing at the terminal, we signal “no more lines” by hitting the Cntrl-D key.

For each line, awk assigns each field (anything surrounded by white space,
the start of the line, or the end of the line) to a variable; the n-th field is

2 The name is derived from the history just mentioned.
3 The = sign means “assign what is on the right to the variable on the left”.

referenced in the program by the variable $n. These variables can be character
strings or numbers; awk decides what they are depending on what you do with
them. So, when our first line is typed in, $1 is 23, $2 is 41, and so on. The
next commands do the arithmetic, assigning values to d and drxd, and then
printing these values out as 23.6883 0.413439. Subsequent lines are handled
the same way. Note that we write the expression as $1 + ($2+$3/60)/60,
using what is called a nested arrangement, with parentheses to set the proper
order of operations.

Control Flow

Looking at the various inputs and outputs, we see one oddity and one error.
The oddity is that the program is perfectly happy to accept expressions such
as 60 60 60, which in proper notation would be 61°01’00”. But since we
get the right answer we can ignore this as harmless. However, the program
does not handle negative values properly. An angle of —1°30’00” should be
interpreted with the minutes and seconds having the same sign as the degrees;
the computer, as it does all too often, has done what we asked for, not what
we wanted. This is not difficult to fix, and introduces an example of control

flow:

BEGIN{dr=3.14159265/180.%}

{
if ($1>=0) d=$1+($2+$3/60)/60
if($1<0) d=$1-($2+$3/60)/60
print d,dr*d

}

which gives:

% awk -f baby
-100

-1 -0.0174533
-100

-1.5 -0.0261799
b

The statement

if (something)

causes what follows it to be executed if something is assigned the value of TRUE.
“What follows” can be a single statement, as shown above, or a number of
statements held together by braces; the awk program could as well be written
as

BEGIN{dr=3.14159265/180.}
{
if ($1>=0) {
d=$1+($2+$3/60) /60
}
if ($1<0) {
d=$1-($2+$3/60) /60
}
print d,dr*d
}

The indentation in front of each line is meaningless to the computer — but it
is well worth your while to use it to make the program more obvious to you,
for example by indenting groups of statements, as shown above, rather than
by writing (for example)

BEGIN{dr=3.14159265/180.}{if ($1>=0) d=$1+($2+$3/60)/60
if ($1<0) {

d=$1-($2+$3/60) /60

}

print d,dr*d}

which is the same to the computer, but harder to read.

Truth and Falsity

It is worthwhile to go a little deeper into the part between the parentheses
in the if () statement. Again, what happens here is that the awk interpreter
looks at what is there and evaluates it; we can think of the material between
the parentheses as an expression, just like an expression in arithmetic, but
whose value is either TRUE or FALSE: such an expression is called a logical
variable. A statement such as if (d>0){ is equivalent to

yn = (d>0)
if (yn){

We need to first consider what form the expression must have to be accept-
able to awk. arithmetic expressions are acceptable (that is, can be understood
by awk) if they make sense algebraically:

((3.14*%a+b*x*x4) /c) + d - x/v

makes sense? but x*+y does not.

So, what are acceptable forms for truth-valued statements? The general
form is variables connected by logical operators. The available logical op-
erators are listed in Table , and described in terms of what makes the overall
expression true, given the logical values (truth or falsity), or relative numerical
or other values of the variables on either side of the expression. The first four
operators in Table are basically the same as the algebraic ones. Note that
these can, in principle, be applied to other kinds of variables than numerical
values, though unless you know what you are doing this is not a good idea;
for example, is the character string finagle greater than flange?

The next two operators evaluate if the variables are the same or not.
This might mean “have the same numerical value”, but extends beyond this
to, for example, pairs of character strings. Remember that “the same as”

4 Remembering that x*#n is what is written as =™ in algebraic notation.

Operator Name Meaning

> greater than True if previous variable exceeds fol-
lowing one

< less than True if following variable exceeds
previous one

>= greater than or equal to True if previous variable exceeds or
equals following one

<= less than or equal to True if following variable exceeds or
equals previous one

== equal to True if previous variable equals fol-
lowing one

1= not equal to True if previous variable does not
equal following one

&& and True if both flanking variables are
true

|l or True if either flanking variable is true

Table 1: Logical operators in awk

includes non-printing characters; “ and ” (with blanks) is not the same as
“and” (without).

Notice that ==, meaning “has the same value as” is not at all the same
as =, which means “assign the value on the right to the variable on the left.
In my experience, confusion between these is easy when typing, and can lead
to quite mysterious behavior. Suppose you wanted if (x==1), which means
“do the following if x is 17, but type if (x=1) by mistake. This will cause
very different behavior, because if (x=1) evaluates the statement x=1 in two
ways: it assigns x the value 1, and assigns the statement the value TRUE — so
whatever the if controls, always happens, with x given a new, fixed value into
the bargain. The stubborn refusal of the program to create different values
can be very puzzling.

The last two operators are for logical variables; while we do not usu-
ally start with the such variables, they often occur as intermediate values
in a compound statement. For example, x>1 and y<=0 both evaluate as
logical variables, from which we could form a compound statement such as
(x>1) | | (y<=0), which would be true if either substatement (the first or the
last) was true, or (x>1)&&(y<=0), which would be true only if both (the first
and the last) were true.

Including awk in Scripts

So far we have assumed that the instructions for awk will be placed in a
separate file, and that we will tell awk to read these instructions using awk -f
file. But in fact we can include the instructions with the invocation of awk,
either at the terminal or in a script; unless you are doing something simple,
or never make typing errors, you should use a script. As an example, if we
rewrite our baby script to include the invocation of awk, the file baby would
be:

awk ’BEGIN{dr=3.14159265/180.}
{
if ($1>=0) d=$1+($2+$3/60)/60
if ($1<0) {
d=$1-($2+$3/60) /60
}
print d,dr*d
}7

and we would run it by first making it executable with chmod and then running
it:

% chmod +x baby
% baby

-100

-1 -0.0174533
-100

-1.5 -0.0261799
b

Including the invocation and the commands in the same file is best: you don’t
lose anything by including the invocation of awk in the file. Since you will
need to do so if there is more than one invocation of awk in the script, it is
just as well to make a habit of writing awk into any script that uses it. In
these notes I will generally not do this, but that is only to save space.

One question that is best addressed here is how to put a shell variable
(from the command line of the script) into awk: to do so, equate a variable
name in awk to a shell variable just after the awk invocation. For example,
we can modify the above script to work in some other base than 60 by writing
it as

awk ’BEGIN{dr=3.14159265/180.%}
{
if($1>=0) d=$1+($2+$3/base) /base
if ($1<0) {
d=$1-($2+$3/base) /base
}
print d,dr*d
}’ base=$1

which will put whatever you type as the first command-line argument into
the variable base. With this modification, we could accomplish the totally
pointless task of going from decimal to decimal:

% baby 10
12345

123.45 2.15461
%

Note that the variable cannot be used in the part of the awk program just
after the BEGIN; it is only visible in the main loop and after. (There is a way
around this, but you’ll have to look it up).

Variables

Up to now I may seem to have been vague about what kinds of variables
there are. This is because, though awk has two types of variables, it is very
permissive about assigning them. You can pretty much use any name for any
type of variable. The main types of interest are:

A.

Numeric: these are just like variables in algebra; they are assumed to be
real numbers, though with finite precision.

. String: these are strings of characters. The string 9 is distinct from the

numeric value 9; writing x = 9 assigns a numeric value to x, while writing
x ="9" assigns the single character 9 to x.

. Logical: we talked about these earlier, but I should now reveal, for the

sake of accuracy, that awk does not actually have such a variable type;
instead TRUE is represented by any non-zero numeric value, or any non-
empty string value; FALSE is represented by zero (numeric) or the empty
string "".

Obviously, there is plenty of opportunity to get into trouble if you try to

mix numeric and string variables — which you can do. And awk will decide
what type a variable is depending on what you do with it. For example,
consider the following program fragment:

x="8I0"

y=233

Z=xX+y

print x,y,z
y="233"

Z=xX+y

print x,y,z
z=x+1+y+1

print x+1,y+1,z

which produces the output

SI0 233 233
SI0 233 233
1 234 235

showing that the string “233” is converted to the numeric value 233 when it
is included in an addition.

So far I have discussed variables that you, the programmer, are free to
make up and assign. But awk also has preset variables that relate to the
lines it reads in. Most of these are strings, but again could be interpreted as
numeric if appropriate. As noted in Section , the variable $n means “the n-th
field on the input line”; the variable $0 means “the entire input line”. A field
is a string surrounded by field separators; by default these are blanks and
tabs (plus the start and end of the line). The variable NF is the number of
fields on a line; the variable NR (the “record number”) is the number of the line
read in, starting with one. So an awk program to print out lines 25 through 44
would be {if (NR>=25&&NR<=44) print $0}. The final named variable you
are likely to need is FS, which contains the value of the field separator. If, for
example, you wanted to treat as separate fields strings that contained blanks,
but were separated by tabs, you would write FS="TAB" at the start of the
program (in the part done by the BEGIN statement).?

Numeric Operations and Functions

Though awk was originally intended more for dealing with character strings
than with numbers, it has acquired enough mathematical capability to be
useful for simple calculations. In addition to the usual arithmetic operators,
+, -, %, and /, we have already encountered exponentiation **. Another
arithmetic operator is %, which means “produce the remainder after dividing
the previous variable by the following one”. So, for example, 1%2 is 1, 2%1 is
0, 99%9 is 0, 99%7 is 1, 2.1%1 is 0.1, 3.2%2 is 1.2, 10.3%3 is 1.3, 10.3%5 is 0.3,
1234567895%5 is 0, 10.3%.1 is 1.38778 x 10716, and 12345678876543215Y%5
is 1. The last two cases show that the internal arithmetic is not infinitely
precise: the answers should both be zero.

A function related to the above is int (x), which returns the integer part of
x, an operation usually called truncation. The truncation is always towards
zero, so int(1.2) is 1, int(0.5) is 0, int(0.999) is 0, int (100.3) is 100,
int(-1.2) is -1, int(-3.999) is -3, and int(-0.1) is 0.

Built-in functions in awk include the usual elementary ones: the square
root sqrt, the exponential exp, the natural log log, the sine and cosine sin
and cos, and the two argument arctangent atan2. The last one, if called as
(say) atan2(y,x), evaluates the arctangent of y/x, but keeping the signs to
get the correct angle between 0 and 27. So, for example, atan2(0.0,1.0) is
0°, atan2(0.5,1.0) is 26.565°, atan2(1.0,1.0) is 45°, atan2(1.0,0.5) is

5 Of course, you would press the TAB key, not type the letters TAB.

10

63.435°, atan2(1.0,0.0) is 90°, atan2(-1.0,0.0) is -90°, atan2(0.0,-1.0)
is 180°, atan2(-1.0,-1.0) is -135°, atan2(1.0,-1.0) is 135°. (Actually,
the values are returned in radians, but I have converted them to degrees for
clarity.)

Finally, awk includes a random-number generator, or more correctly a
pseudorandom number generator, or PRNG. This is a function that, every
time it is called, returns a numerical value between zero and one, computed
so that successive values are unrelated to each other, and a large number of
values will be uniformly distributed over their possible range. The reason for
the “pseudo” is that these numbers are in fact completely deterministic: they
are computed using arithmetic in such a way as to produce the properties just
given. This means that if we had an awk program called random

{
for(i=1;i<=$1;i++) {
x=rand ()
print x
}
}

every time we ran the line echo 10 | awk -f random we would get the same
10 numbers.® The way around this is to know that the sequence output by the
PRNG is controlled by an initial value, called a seed. Setting different values
of the seed will produce completely different sequences. The seed is set within
awk using a function srand. Calling srand(x) will set the seed value to x;
calling srand () will set the seed to a value that depends on the current date
and time, and thus will be different every time you run the program.

Looping

We now return to control flow, to discuss the other main form of it, which is
looping: that is, repetition of the same set of commands, over a specified range
of some variable. Suppose (to take a very simple example) that we wanted to
print out the first n powers of a given number. We assume that we will type
in the number, and the number of powers; then the awk script (call it power)
would be

{

61 get 0.237788, 0.291066, 0.845814, 0.152208, 0.585537, 0.193475, 0.810623, 0.173531,
0.484983, and 0.151863.

11

for(i=1;i<=$2;i++) {
print $1*xi
+
}

% awk -f power
24

2

4

8

16

38

3

9

27

81

243

729
2187
6561
255
2.5
6.25
15.625
39.0625
97 .6562
yA

here the for(i=1;i<=$2;i++) { statement is the start of the loop, which is
closed by the }. The for statement has three parts, which set the starting
value of the looping variable, the range of values for which the loop will be
repeated, and the increment to the looping variable each time the loop is
executed. The expression i++ is equivalent to i=i+1. So the loop is executed
until i is incremented to a value for which the middle statement is no longer
true; then awk exits from the loop, and reads the next line of input: this
reading of lines is an implicit loop, also called the outer loop of the program.
It may be appropriate, when using ewk for numerical purposes, not to use
this outer loop at all — or rather, to use it once, just to get the program to
execute. Here, for example, is a script to write 1000 random numbers:

echo x |\

12

awk ’BEGIN{srand()}
{

for(i=1;i<=1000;i++) print rand()
}7

Input and Output

Our examples up to now have used the print statement for output. But awk
can also print in a variety of specified formats, using the printf statement.
If you know C this will be familiar; if not, it won’t.

The basic syntax of this statement is

printf" formatting information" , variable, variable, . . .

where what is between the "’s is material that will be printed out literally, and
format specifications for how the variables are to be printed. Everything
that is not a format specifier will be printed as given. this literalness extends
to the newline character; if you want this string at the end of a line, you
must specify it by including a \n at the end of the formatting information. In
fact, you can include \n anywhere in the formatting information; one printf
statement can print more than one line.

The format specifiers all start with a %. The simplest is %s, which means
“print as a string”. So printf"%s\n%s\n%s\n",s1,s2,s3 would print the
three string variables on three lines. (The number of format specifiers must
match the number of variables). If the s is preceded by a number, the string
will print out using at least that many spaces; if s1 is less than 20 characters
long, printf"%20s\n",s1 would print s1, after enough spaces to make up a
total of 20. (If s1 is more than 20 characters long, this specification would
print it in full, with no additional spaces). Preceding the number by - (for
example %-20s) makes the string left-justified instead.

There are a large number of ways to format numbers. The specifier %d will
output the integer part of the variable; again, a number will give the number
of spaces, and a - will cause left justification. So if you are writing integers of
less than (say) 9 figures, a %9f will print them in a nicely justified column. If
you precede the number with a zero, the value will be written out with leading
zeros; for example, %03d would write the value 22 as 022.

The specifier £ will output the variable as a decimal value, with the number
of decimal places being set by a number following a period. For example, % .4f
means “print a value with four decimal places”. In this case, any number before
the period sets the total number of characters to print, and a —before that sets

13

the justification: %-10.6f will use output 10 characters at least, left-justified,
and with 6 decimal places.

This is all probably better shown than outlined, so here is a program that
uses a range of formats, followed by its output.

echo 3.14159265358979 |\

awk ’{pi=$1
s="pi and pi**40 are "
pi40=pi**40
print s,pi,pi40
printf"Ys %f %f\n",s,pi,pid0
printf"%s %.4f %.4f\n",s,pi,pi40
printf"%40s %.4f %.0f\n",s,pi,pi40
printf"%-40s %.4f %.4f\n",s,pi,pi40
printf"Ys %.6f %d\n",s,pi,pi40
printf"%s %.18f %.4f\n",s,pi,pi40
printf"pi is %.4f and pi**40 is %.4e\n",pi,pido0

pi and pi**40 are 3.14159265358979 7.69121e+19
pi and pi**40 are 3.141593 76912142205153984512.000000
pi and pi**40 are 3.1416 76912142205153984512.0000
pi and pi**40 are 3.1416 76912142205153984512
pi and pi**40 are 3.1416 76912142205153984512.0000
pi and pi**40 are 3.141593 7.69121e+19
pi and pi**40 are 3.141592653589790007 76912142205153984512.0000
pi is 3.1416 and pi**40 is 7.6912e+19

String Operations and Functions

Section described a set of operations (arithmetic, mostly) and functions for
numeric variables. But awk has similar capabilities for string-values variables.
The only operation involving string variables is concatenation, which is done
with no symbol at all; if we write

a = "Colorless green ideas "
= "sleep furiously."
c=ab

c would be have the (string) value Colorless green ideas sleep furiously.

This has one unexpected consequence in using print statements; if you
write print $1 $2 these two variables will appear without a space between
them; you must write print $1,$2 to get a space.

14

More interesting are the various functions that take string-valued vari-
ables as arguments. The simplest are toupper (string) and tolower (string),
which return the string value with all the letters set to uppercase or lowercase
respectively.

In my experience one string function that sees a lot of use is substr, which
has the syntax

a = substr(string, nstart, ntake)

where string is a string-valued variable, and nstart and ntake are numeric ones
(which may of course just be numbers). This function returns (passes to a
in the example) a total of ntake characters from string, starting at the one
numbered nstart. So, extending our example above

a = "Colorless green ideas "
b "sleep furiously."
c=ab

d = substr(c,1,11)

e = substr(c,15,15)

would make d equal to Colorless g and e equal to n ideas sleep f.
Using the substr function on the awk variable $0 (which represents the
entire line read in) is a great way to get parts of a series of lines that appear
in different columns, if the blanks cannot be used as separators. For example,
lines 4 through 10 below come from the southern California earthquake catalog

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
Year Mo Dy Hr Mn Sec Lat Long Q Mag Dep Ns Err CID
1999 10 16 09 46 44.13 34 35.64-116 16.26 A 7.1 0.02 55 0.16 9108652
1999 10 16 09 47 43.76 33 13.92-115 39.60 D 4.7 6.00 11 0.32 3327063
1999 10 16 09 50 49.15 34 13.26-116 21.96 C 3.0 6.00 10 0.26 3327068
1999 10 16 09 51 48.33 34 26.71-116 15.82 A 4.8 0.26 51 0.10 3320846
1999 10 16 09 52 15.80 34 36.54-116 17.16 C 4.2 6.00 13 0.38 3327069
1999 10 16 09 52 53.97 34 30.12-116 12.18 C 5.0 6.00 22 0.29 3320847
1999 10 16 09 54 54.93 34 37.02-116 17.34 C 4.3 2.71 20 0.26 3327070

I have used the first three lines to show the numbering along the line, and the
labels.” Unfortunately, there is no space between the minutes of latitude and
the degrees of longitude; so to convert these coordinates to decimal we would
need

latd=$7

" That the number of characters goes to 80 is a vestige of a much older technology,
namely the 80-column punch card, introduced by IBM in 1928.

15

latm=substr($0,29,5)
lond=substr($0,34,4)
lonm=$9
lat=latd+latm/60
lon=lond-lonm/60

But what if you want to get all the characters from (say) number 13
to the end of the string? Then you need the length function, which is
length(string), and returns the number of characters in the string. With
this, getting all the characters from 13 on, regardless of the string length,
would be done with substr(string,13,length(string)-12). You need the
-12 because the length is counted inclusively: if it were 13 characters long,
you want one character, not zero.

The next two functions we consider are index, and match. The first one
has the syntax

n = index(stringl , string2)

which returns the character number for which string2 matches stringl, or zero
if it does not. For example

"Colorless green ideas "

= "sleep furiously."

=ab

= index(c,a)

= index(c,b)

= index(c,"green ideax"

= index(c," (Noam Chomsky)")

o8 B KN o oM
|

would set k to one, n to 23, and m and o to zero. The second has the syntax
n = match(stringl , regexp)

which returns the character number for which the regular expression finds a
match to the string.

Arrays

We finish with a discussion of arrays: that is, sets of variables, each of which is
associated with an index. The most familiar example of this is probably that
of a vector, which is a collection of N numbers x1, 2o, ...x N, each associated
with an integer from 1 to N. As you might imagine, awk allows both numeric

16

and string variables to be indexed, with the syntax being var [index]. So, for
example, we can refer to variables in an array in statements such as

al1] 3.14%x*x6
a[2] = 2
b = al1]/al2]

where the size of the array is set by how many indexed variables we want to
refer to, with awk keeping track of this as it goes.

As an example, here is an awk program that reads in lines, each of which
has some number of numbers on it, and returns the exponentials of these
numbers, with no more than three on a line

awk ’{

for(i=1;i<=NF;i++) {
out [i]=exp($i)

}

for(i=1;i<=NF;i++) {
printf"%20.3f ",out[i]
if (i%3==0) printf"\n"

}

if (i%NF!=0) printf"\n"

}7

The first for loop loads the array; the next one prints it out. The printf
statements are arranged to produce a space, with a newline only every three
values; the last printf adds a newline at the end if one was not just printed
out. If we use this script to read from a file that contains

12345678910
0.10.20.30.40.50.60.70.80.9
we get
2.718 7.389 20.086
54.598 148.413 403.429
1096.633 2980.958 8103.084
22026.466
1.105 1.221 1.350
1.492 1.649 1.822

2.014 2.226 2.460

17

There is a string function split than can be useful in filling an array; this
has the syntax

n =
split (string, array, separator)

which returns the number of elements in the string separated by the separator
string, and puts those elements into array. Suppose, for example, that we
have dates given (as in the earthquake catalog above) in the form of year,
month, and day, and want to convert these to year and day of year. An awk
script for doing this would be

awk ’BEGIN {split("0 31 59 90 120 151 181 212 243 273 304 334",mth)}
{

yr=$1

day=mth[$2]+$3

if (yr4==0&&mth[$2]>=59) day=day+1

print yr, day
}7

The part executed before reading sets up an array of the number of the cumu-
lative number of days before each month. The main loop computes the day
of the year using this and the day of the month, with a correction for leap
years.®

You might wonder if the indices in an array have to be numeric — and they
do not. An array that uses strings for indexes is called an associative array,
and can be very useful indeed. Here is a simple example, for converting dates

of the form 13 May 2009 into a year and day of year:

awk ’BEGIN {
month["Jan"] = 0
month["Feb"] = 31
month["Mar"] = 59
month ["Apr"] = 90
month["May"] = 120
month["Jun"] = 151
month["Jul"] = 181
month["Aug"] = 212
month["Sep"] = 243
month["Oct"] = 273
month["Nov"] = 304

8 It is convenient that, according to the Gregorian calendar, all years from 1801 through
2099 and divisible by 4 are leap years.

18

month["Dec"] = 334

}
{
yr=3$3
day=month [$2] +$1
if (yrk4==0&&month [$2]>=59) day=day+1
print yr, day
}

which is very much the same as the previous example, but shows how we may
index by strings.

You may now be wondering how, if the index is not a number, it is possible
to step through it as we can with numeric indices — it isn’t, but awk provides
a syntax that amounts to doing this. First of all, there is a logical expression

item in array

which is TRUE if item is one of the indices of array, and FALSE other-
wise. For example, in the last example, "Jul" in month would be TRUE: (so

if ("Jul" in month) would cause something to happen), whereas 181 in month

would be FALSE.
Secondly, we can say

for(wvariable in array)

which will cause the variable to cycle through all the indices of the array. We
could, for example, get the weather for each month?

awk ’BEGIN {

month["Jan"] = "Ice and snow"

month["Feb"] = "Hail and sleet"

month["Mar"] = "Wintry wind"

month["Apr"] = "Endless showers"

month["May"] = "Frost and hail"

month["Jun"] = "Rains and never stops"
month["Jul"] = "Occasional bright intervals"
month["Aug"] = "Cold and dank and wet"
month["Sep"] = "Mist and mud"

month["0Oct"] = "Wind and slush and rain and hail"

% Modified from a song about the English weather, by Michael Flanders and Donald
Swann, and the BBC weather forecasts.

19

month ["Nov"]
month["Dec"]

"Fog and dark"
"Freezing wet"

}
{
for($2 in month) {
print month[$2]
}
}7

Things Undiscussed

I have left out a great many things in this discussion. Here are a few that
might be worth looking into:

1. Control Flow. There are a number of other kinds of loops, such as the
do-while, that can be useful.

2. Input and Output. The getline statement provides a useful way to
read information in from a file other than the one you are piping to the
awk program.

