Unix Shell Scripts

A shell script is a readable file of Unix commands that is run (“executed”) by
the shell, just as anything you type in would be. If you only had to type in a
series of commands once, there would be no advantage in putting them in a
file, but very often you do need to repeat commands, and then having them
in a file saves you a lot of time, and errors. Also, the shell allows options in
a script file that would be pointless if you are typing at the terminal; these
options make it easy to create scripts, based on existing programs, that will
handle a wide range of activities.

In this section I present some examples, in which I use this font for what
the computer produces, and for scripts and names of files, and this font for
what you type. We use italics to denote something that does not have to be
typed in literally.

Two Simple Examples
In the lecture last time, we showed that typing
Jicat tmp | sort | uniq -c

would produce a list of the words in tmp, with a count of the number of
occurrences of each word. We can turn this into a script by creating a file
whose contents are

#!/bin/bash

#

program to count word occurrences
#

cat tmp | sort | uniq -c

which we might call (remember this for later) sortcount. If we then issue the
command

% chmod +x sortcount
we will have made this file (the script) executable, so that typing
% sortcount

will produce the same output as typing in the original set of commands.

To explain the script: it starts with a # which tells the shell doing the
execution to in its turn invoke the shell whose pathname is given immediately
thereafter: in this case bash, the Bourne Again shell. All subsequent lines
starting with # are regarded as comments and ignored. It may seem otiose to
comment something as short as this, but it will help someone else to under-
stand what it does; and as a famous quote from one of the inventors of Unix
has it “A year from now, you are someone else”.

For a second example, here is a program that you run interactively by
answering questions: actually, two programs, one that writes out random
numbers to a file and another that computes the statistics of numbers in a
file. (These programs are not available on the machines you have access to).

At the keyboard, what you would see as you type is

% white

File name and length; tmp 1000

Type of output; gaussian

Square root of variance; 2

1000 terms written to file tmp

% stats

Data file; tmp

Begin, end term numbers; 1 1000

no of data 1000 mean -0.80659E-01
variance 3.8632 stan dev 1.9655
min x -6.1448 max X 6.0661

yA
The easiest way to capture this is to use script, which runs as

% script
Script started, output file is typescript
% white

min x -6.1448 max x 6.0661

% exit

exit

Script done, output file is typescript
b

and captures what was typed in as a file named typescript. After some
editing this would look like

#!/bin/bash
#

program to create random numbers and find their statistics
#

white << XXX
tmp 1000
gaussian

2

XXX

stats << XXX
tmp

1 1000

XXX

The usage “« string” means “redirect standard input to read from the following
lines until you see one that begins with string”. This usage is called a “here
document”, and allows you to include anything you would type into a program
in a script instead. It is worth developing the habit of doing this for anything
you will be running more than once—indeed you should do it even for command
sequences you don’t expect to rerun. In this usage, any set of characters will
do for the string that follows the « and also ends the document; some people
use EOF, others a single exclamation point.

Command-Line Arguments

The examples of the previous section both show scripts that do exactly one
thing; however useful this is as an alternative to retyping, it probably doesn’t
seem that impressive. However, once we add a few additional features we can
do much more.

To start with, consider our script sortcount from the previous section;
we change it to

#!/bin/bash

#

program to count word occurrences
#

cat $1 | sort | uniq -c

replacing the file name tmp with the symbols $1. These symbols, when in-
terpreted by the shell, mean “put the string that is the first command-line
argument here”; so if we type

% sortcount tmp

we get the same response has before. But we can type
% sortcount file

where file is any filename, and get the same sorting and counting results for
that file. So we have written a script that does a specific task on any file; if
you like, a new Unix command.

In a script, the symbol combination $n, where n is an integer from 1
through 9, means “put the n-th command-line argument here”. For example,
to make sortcount print the n most common words from a file, we would
change it to

#!/bin/bash

#

program to count word occurrences

#

cat $1 | sort | uniq -c | sort -n -r | head -$2

which would be invoked as, say Here we have used a second sort to order the
results by number of occurrences (the -n flag) with the largest first (the -r
flag), and piped this to the head command to print out only the first $2 lines.
Note that we need a - for the second command-line argument.

As an example of running this, I created a file tmpa, which is just this
section of the notes modified to put one word on each line. I can then run
the script sortcount with the following invocation and results to get the 6
commonest words:

% sortcount tmpa 6
41 the
25 to

25 a

17 that

16 of

16 and
b

which is pretty typical for English prose.

The case Structure

If I forget to put arguments on the command line, and just type
% sortcount

nothing happens: the computer does not even respond with a prompt. What
is really happening is that the lack of an argument has caused cat to read
from the standard input, which is to say the terminal: the computer is waiting,
with infinite patience, for me to type something. And I won’t see any output,
no matter how many lines I type, until I type Cntrl-D to indicate what, on the
terminal, corresponds to an end-of-file signal when the program reads from a
file.

This is at best momentarily bewildering, and at worst leads you to think
the machine is broken. We can fix the problem with one new argument, and
a new piece of scripting: the case syntax. (I call this syntax because it is not
just one line). The modified script is

#!/bin/bash

#

program to count word occurrences
#

case $# in

2)

cat $1 | sort | uniq -c | sort -nr | head -$2
*)
cat << XXX
Usage: sortcount file number-lines
XXX

esac

where we have made one minor change in the line that actually does something,
which is to merge the flags for the sort command: this is almost always
allowed.

The new part of the script is the first uncommented line:

case $# in

which introduces a new variable, $#, which is interpreted as “the number
of command-line arguments”. This can be anything; the case and in are
required. The structure of a case is

case wvariable in
choicel)

do something
choice2)

do something else
choice3)

or something else again

more choices, perhaps

esac

If the variable matches one of the choices, then the material between the)
that follows that choice and the following ;; will be executed, and not the
rest; the esac ends the case. Note that the closing parenthesis on each choice
line is also needed.

In this example, if there are two command-line arguments, $# matches the
first choice, and the program runs as it should. The choice * means “anything
else”, and causes the here document below it to be sent to the screen, so if we
just type the script name, we get

% sortcount
Usage: sortcount file number-lines

b

so the script has reminded us of what it is for. Based on my own experience, it
is very easy to give a script a simple and deeply evocative name that, one week
later, I cannot remember the meaning of. Adding this additional structure to
the script means that if I just type the script name, it will remind me what it
is for and how to use it.

The do Structure

Suppose we want sortcount to be able to combine multiple files. This is easy
if we introduce the do structure. We rewrite the program as

#!/bin/bash
case $# in

0)
cat << XXX
Usage: sortcount file file
XXX
*)
for clv in $x
do
cat $clv | sort | uniq -c | sort -nr | head -10
done
esac

where I have omitted the comment lines for brevity.

Here I have made the reminder part occur only if there are no command-
line variables. If there are any, then the section after the *) is executed. In
this section, the variable clv is a shell variable; you can use any name, but
clv is a convenient shorthand for “command-line variable”. The symbols $
mean “a list of all the character strings on the command line”. The overall
structure amounts to “for all entries in the list, assign the value of the entry
to clv, and then do whatever is between the do and done lines”. In this case,
clv takes on the values of strings in the command line; for each value, the file
with that name is processed. Within the script $clv is how we refer to the
variable. Note that because we are looping over all values in the command
line, we can no longer get the number of lines for head from there, so we have
made it a fixed value.

Now running the program looks like

% sortcount

Usage: sortcount file file
% sortcount textl text2

410 the

221 and

221 a

187 of
175 to
131 1
105 that
100 you
96 it
93 in
/A

where textl and text2 are files of text.

